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Abstract

Training a machine learning model today involves minimizing a loss function on datasets that are often

gigantic, and so almost all practically relevant training algorithms operate in an online manner by reading in

small chunks of the data at a time and making updates to the model on-the-fly. As a result, online learning, a

popular way to analyze optimization algorithms operating on datastreams, is at the heart of modern machine

learning pipelines. In order to converge to the optimal model as quickly as possible, online learning algo-

rithms all require some user-specified parameters that reflect the shape of the loss or statistics of the input

data. Examples of such parameters include the size of the gradients of the losses, the distance from some

initial model to the optimal model, and the amount of variance in the data, among others. Since the true

values for these parameters are often unknown, the practical implementation of online learning algorithms

usually involves simply guessing (called “tuning”), which is both inefficient and inelegant. This motivates the

search for parameter-free algorithms that can adapt to these unknown values. Prior algorithms have achieved

adaptivity to many different unknown parameters individually - for example one may adapt to an unknown

gradient sizes given a known distance to the optimal model, or adapt to the unknown distance given a known

bound on gradient size. However, no algorithm could adapt to both parameters simultaneously.

This work introduces new lower bounds, algorithms, and analysis techniques for adapting to many pa-

rameters at once. We begin by proving a lower bound showing that adapting to both the size of the gradients

and distance to optimal model simultaneously is fundamentally much harder than adapting to either individ-

ually, and proceed to develop the first algorithm to meet this lower bound, obtaining optimal adaptivity to

both parameters at once. We then expand upon this result to design algorithms that adapt to more unknown

parameters, including the variance of the data, different methods for measuring distances, and upper or lower

bounds on the second derivative of the loss. We obtain these results by developing new techniques that convert

non-parameter-free optimization algorithms into parameter-free algorithms. In addition to providing new and

more adaptive algorithms, the relative simplicity of non-parameter-free algorithms allows these techniques to

significantly reduce the complexity of many prior analyses.



Chapter 1

Introduction

1.1 Online Learning

This thesis is about Online Learning, which is an elegant and robust way to understand stochastic, streaming,

and even adversarial environments [60; 53; 33; 23]. Because many modern-day machine learning applications

involve huge amounts of data, most practical methods for training models process the data in an online manner

by processing data in small chunks and making updates to the model using only this streaming view of the

dataset. Due to its relative simplicity and lack of constraining assumptions, many of the popular methods

used to train machine learning models today (e.g. [17; 51]) are stated and analyzed using the online learning

framework. Before describing the technical contributions of this work, we will take some time to introduce

the setting of online learning and provide some background on prior work.

Online learning is a game played between a learner and the environment. The game consists of a series

of T rounds. In the tth round, the learner outputs a vector wt in some specified space W (called the domain),

and then the environment outputs a loss function `t : W → R. The goal of the learner is to have a low regret,

which is equal to the total loss suffered minus the total loss suffered at some comparison point ẘ, chosen by

the environment:

R(ẘ) =

T∑
t=1

`t(wt)− `t(ẘ)

The simplest benchmark for any online learning algorithm is to obtain sublinear regret, which means that

limT→∞
RT (ẘ)
T = 0 for each ẘ. Sublinear regret is a desirable characteristic because it means that in the

large-T limit, the algorithm does just as well on average as the comparison point ẘ (the “average regret” is

going to zero).

The online learning framework is appealing because it is simple enough to reason about effectively, but

flexible enough that we can use it to model many practical problems of interest. As a concrete example,

suppose we are tasked with predicting the weather. Each day we might have some measurement vector

x ∈ R3 which records the temperature, wind speed and humidity in the morning, and we need to make a

1



CHAPTER 1. INTRODUCTION 2

prediction ŷ for the number of inches of rainfall that will occur that day. At the end of the day we observe

the true rainfall y that occurred and we consider ourselves to be doing well if |y − ŷ| is small. Suppose we

want to employ a simple linear model: ŷ = w · x for some vector w we will choose. Then we can map this

scenario into the online learning framework as follows:

1. Each day is a distinct round.

2. On the tth day, we choose a vector wt, observe xt (the measurements on the tth morning) and predict

ŷt = wt · xt.

3. We then observe the true value yt and construct the loss function `t(w) = |w · xt − yt|, which has

`t(wt) = |ŷt − yt|.

4. The regret is how much error we actually accrue minus the error we would have accrued if we had

stuck to some fixed (presumably optimal) vector ẘ:

RT (ẘ) =

T∑
t=1

|xt · wt − yt| − |xt · ẘ − yt|

This example illustrates a subtlety of online learning: the role of the comparison point ẘ. One might think

that the right way to measure an algorithm’s performance is simply the total loss
∑T
t=1 `t(wt) rather than the

regret. After all, ultimately we are interested in having good weather predictions - the people watching

the morning news aren’t going to be impressed by just low regret! However, this quantity confounds two

factors: the performance of the algorithm, as well as any inherent difficulty introduced by some user-selected

modeling assumptions. For example, in the rain prediction setting above, it is highly unlikely that there

actually exists a vector ẘ such that xt · ẘ = yt every day. Therefore it would be unfair to punish our

algorithm for failing to find any such ẘ and have low loss. We compensate for this inherent difficulty in the

problem by instead measuring the performance relative to a benchmark point ẘ. Thus if we have low regret

but high total loss, this indicates that our learning algorithm is performing well, but we need to improve our

modeling assumptions.

Before moving on, we briefly sketch three more examples of scenarios in which one might apply online

learning, and what it means to have sublinear regret in each scenario.

1. Suppose you are programming a robot to shoot basketballs. There are many parameters of your basket-

ball shooting strategy, including amount of force used, angle of shot and so-on. We will encapsulate all

these parameters in a vector w. Each time you take a shot is one round of an online learning game. The

loss `t(w) is 1 if you miss the shot using strategy w, and 0 otherwise. Each round is subtly different

due to wind variation, temperature, amount of air in the ball and so on. The quantity
∑T
t=1 `t(wt) is

simply the number of missed shots. The quantity
∑T
t=1 `t(ẘ) is the number of shots that would have

been missed if you had stuck to the fixed strategy ẘ. Thus an algorithm that achieves low regret has

nearly the same average shooting accuracy as the best fixed strategy.
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2. Now suppose you are interested in classifying email as spam or useful email. Different values of w

indicate different strategies for classifying the email messages. `t(w) is 0 if the tth email is correctly

classified by strategy w, and `t(w) is 1 otherwise. Then the quantity
∑T
t=1 `t(wt) is the number

of misclassified emails, and
∑T
t=1 `t(wt) is the number of emails misclassified by the best strategy.

Again, an algorithm with sublinear regret would on average misclassify the same number of emails as

the best fixed strategy.

3. Finally, suppose you are training a model to produce transcripts of audio files. You may have a dataset

of millions of hand-transcribed audio files. Since the dataset is so large, you can’t afford to make

many passes over it. So instead, you define `t(w) to be some error measure of the transcript produced

by model w on the tth element of the dataset. Then you may use an online learning algorithm with

sublinear regret to produce a model whose performance is close to the optimal error rate
∑T
t=1 `t(ẘ).

Note that in this example, the online learning algorithm technically produces a sequence of models

with average performance close to that of ẘ rather than a single model, but as we will see in Section

1.2, this is a detail that can be easily remedied.

With a little thought, almost any optimization problem with many “trials” can be considered as an online

learning problem. In fact, we will later see that also any optimization problem with noise (so-called stochastic

optimization problems) can also be viewed as online learning problems. These types of problems abound in

machine learning, and so developing better online learning algorithms improves core components in machine

learning pipelines.

Although sublinear regret is a very desirable property, it turns out that it is actually impossible to achieve

without making further assumptions about the environment. This is formalized in Proposition 1.1 below,

which gives a simple example for which the environment causes every algorithm to obtain linear regret.

Proposition 1.1 ([11]). Suppose W = {0, 1}. LetA be an online learning algorithm with domain W . Given

wt ∈W , let `t(w) = |1− wt − w|. Then A suffers regret RT (ẘ) ≥ T
2 for some ẘ ∈W .

Proof. Clearly
∑T
t=1 `t(wt) = T , so it suffices to show that

∑T
t=1 `t(ẘ) ≤ T

2 for some ẘ ∈ {0, 1}. Notice

that `t(w) ≥ 0 for all w ∈ {0, 1} and `t(0)+`t(1) = 1 for all t, so
∑T
t=1 `t(0)+

∑T
t=1 `t(1) = T . Therefore

it cannot be that both of
∑T
t=1 `t(0) and

∑T
t=1 `t(1) are greater than T

2 and so we are done.

This impossibility result highlights a key aspect of the online learning setup: the environment is allowed

to be adversarial. For example, in the proof of Proposition 1.1, the environment chooses `t after seeing the

learning algorithm’s output wt in such a way as to force `t(wt) = 1 for all t. Thus, in order to make the

problem tractable, we need to place some kind of restriction on the environment’s loss functions `t.

Let’s first consider the most obvious way to prevent this kind of behavior: do not allow the loss function

`t to change each round and instead force the environment to choose a fixed loss `. This solution clearly

rules out the adversarial environment in Proposition 1.1, but it still leaves us with a more subtle problem:

computational complexity. For example, if W = {0, 1}N and ` : W → {0, 1} is the output of some Boolean
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1. For t = 1 . . . T , repeat:

(a) Learner chooses wt in some convex space W .

(b) Environment presents learner with a convex loss function `t : W → R.

2. Environment chooses ẘ ∈W .

3. Learner suffers regret RT (ẘ) =
∑T
t=1 `t(wt)− `t(ẘ)

Figure 1.1: Online Convex Optimization

circuit, then minimizing ` over W is an NP-hard problem. Thus even with a fixed loss we may be unable to

obtain low regret in practice. To rule out NP-hard or worse problems, we need to impose some restriction on

the kinds of losses `t the environment is allowed to supply.

In the general optimization literature, a very common (and successful in practice) assumption that allows

for efficiently minimizing a fixed loss function ` is convexity:

Definition 1.2. Given a convex set W of a real vector space, a function ` : W → R is convex if `(tx+ (1−
t)y) ≤ t`(x) + (1− t)`(y) for any x, y ∈W and t ∈ [0, 1].

There are vast troves of literature on both reducing seemingly non-convex optimization problems into

convex optimization problems, and on efficiently solving convex optimization problems (e.g. see [6; 37]).

We will therefore assume that the domain W is convex and that all our loss functions are convex. Notice that

this assumption also rules out the impossibility result of Proposition 1.1 because W = {0, 1} is not a convex

set. Thus (perhaps surprisingly), it will actually not be necessary force the environment to choose a fixed

loss function, or indeed make any further assumptions about the loss functions at all. Online learning with

this convexity assumption is often called online convex optimization, and it is outlined in Figure 1.1. Online

convex optimization is the main focus of this thesis. This is important, so we restate it in bold below:

All results in this thesis are for online convex optimization.

1.2 Stochastic Problems and Online-to-Batch Conversion

One of the most common problems in modern machine learning applications is stochastic optimization.

Stochastic optimization is very similar to online learning, but has a more limited environment and a slightly

different objective. In stochastic optimization, the environment presents the learner with T losses `1, . . . , `T
each sampled i.i.d. from some distribution D with expectation E[`] = L. The learner’s task is to output a

single point ŵ such that L(ŵ)− L(ẘ) is as small as possible. This is summarized in Figure 1.2.

Our rain prediction example could also be seen as an instance of stochastic optimization. In this case the

distribution D is the distribution over losses `(w) = |x ·w− y| where x, y are random variables representing
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1. Environment chooses distribution D over functions ` : W → R with expectation E[`] =
L : W → R.

2. Environment chooses ẘ ∈W .

3. Environment presents a sample of T i.d.d. functions `t, . . . , `T ∼ D to the learner.

4. Learner outputs ŵ ∈W .

5. Learner suffers suboptimality L(ŵ)− L(ẘ)

Figure 1.2: Stochastic Optimization

the measurements and rainfall on any given day. A good weather prediction algorithm would obtain a low

expected loss E[`(ŵ)]. Since it may not be possible to actually obtain a truly small loss with any ŵ, we again

measure the performance of our algorithm relative to some comparison point ẘ, which can be chosen by the

environment to achieve a low loss.

There are two key differences between stochastic optimization and online learning. First, in stochastic

optimization the learner only outputs (and is evaluated on) a single point ŵ. Second, the loss functions `t
are all drawn i.i.d. rather than being potentially adversarially adapted to the outputs of the learner. The first

point may seem to make stochastic optimization harder than online learning because the learner in some

sense only has “one chance” to do well. The second point, on the other hand, makes stochastic optimization

easier than online learning. It turns out that in a very general sense, the second point is the most important.

It is always possible to convert an online learning algorithm into a stochastic optimization algorithm via the

online-to-batch conversion method, described below:

Proposition 1.3 ([9]). Let w1, . . . , wT ∈ W be the outputs of an online learning algorithm A on losses

`1, . . . , `T drawn i.i.d. from some distribution D. Let ŵ be a randomly selected element of {w1, . . . , wT }.
Then

E[L(ŵ)− L(ẘ)] ≤ 1

T
E[RT (ẘ)]

Where the expectation is over all of the randomness in the losses `t, any internal randomness in A, and the

choice of ŵ. Further, if L is convex, then we may set ŵ = 1
T

∑T
t=1 wt and obtain the same result.

Proof. By definition we have

E[L(ŵ)− L(ẘ)] = E

[
1

T

T∑
t=1

L(wt)− L(ẘ)

]

=
1

T

T∑
t=1

E[L(wt)]− L(ẘ)

Now observe that `t is independent of ẘ andwt sincewt only depends on `1, . . . , `t−1. Therefore E[L(wt)] =
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E[`t(wt)] and L(ẘ) = E[`t(ẘ)]. Thus we have

E[L(ŵ)− L(ẘ)] =
1

T

T∑
t=1

E[`t(wt)− `t(ẘ)]

=
1

T
E

[
T∑
t=1

`t(wt)− `t(ẘ)

]
=

1

T
E[RT (ẘ)]

Finally, when L is convex, by Jensen inequality we have

L

(
1

T

T∑
t=1

wt

)
≤ 1

T

T∑
t=1

L(wt)

so that we may set ŵt = 1
T

∑T
t=1 wt and still conclude the first line of the proof (with an inequality rather

than equality). The rest of the argument is identical.

This Proposition tells us that so long as 1
TRT (ẘ) is small - which is exactly the guarantee provided by

sublinear regret - then we can turn any online learning algorithm into a corresponding stochastic optimization

algorithm. Since online learning algorithms must also be able to handle adversarial environments in addition

to stochastic ones, this brings some measure of robustness to the converted algorithm. One might expect

that by designing an algorithm specifically for stochastic scenarios, we can sacrifice this robustness to obtain

better convergence rates. Surprisingly, this is not so! Usually a converted online learning algorithm has the

same performance guarantees as an algorithm that is specifically designed for stochastic optimization. As a

result, online learning not only allows an algorithm to deal with streaming sources of data, it also provide

simple and attractive ways to solve the stochastic optimization problems at the heart of many classification

and regression tasks in machine learning.

1.3 Outline of the Thesis

The primary goal of this work is to design online learning algorithms that adapt to apriori unknown data

characteristics. For example, if the loss functions `t turn out to be all the same, or if the comparison point

ẘ happens to be equal to our initial prediction w1, we should expect to have lower regret than if they are

changing adversarially or if ẘ is far away from w1. We will describe several techniques for accomplishing

these and other goals, as well as some lower bounds showing that some goals are out of reach.

We will start in Chapter 2 by introducing several different techniques that are used to design online

learning algorithms and deriving the basic theorems of the field. Next, we will review some relevant prior art

for adaptive online learning in Chapter 3. Then we will move on to our original contributions. In Chapter 4

we will describe a new lower bound and matching optimal algorithm for parameter-free online learning. Our

algorithm design and analysis in Chapter 4 will follow the classical FTRL technique introduced in Chapter 2.

In Chapter 5 we will present an alternative method for designing parameter-free algorithms that significantly
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simplifies the analysis, and also sometimes provides superior results. Then in Chapters 6 and 7 we will apply

these reductions to obtain algorithms that adapt to other parameters relating to the curvature or sparsity of the

losses.



Chapter 2

Basic Notions in Convex Analysis and
Online Convex Optimization

In this chapter we will outline the most common techniques used to design online learning algorithms. We

will start by reviewing some basic facts about convex functions, and then use this background to directly

derive the online subgradient descent algorithm. From there we will go over the Follow-the-Regularized-

Leader and Mirror Descent frameworks for designing online learning algorithms, and show how the gradient

descent algorithm can be realized and analyzed as special cases of these frameworks. Then we will move on

to describe slightly less classical approaches based on coin betting and online relaxations.

2.1 Duals, Norms, Convexity and Notation

In this section and throughout this thesis we will assume a basic familiarity with abstract linear algebra. In

particular, we make use of the concepts of inner products, Hilbert spaces, Banach spaces, dual spaces, norms

and dual norms. For completeness, we provide here a short overview of some the background definitions

and theorems we will use. A further description of some concepts relating to Banach spaces can be found in

Section 5.A.

First, we introduce the notion of a norms:

Definition 2.1. Given a real vector space V , a norm is a function ‖ · ‖ : V → R that satisfies:

1. ‖cv‖ = |c|‖v‖ for any c ∈ R and v ∈ V .

2. ‖v + w‖ ≤ ‖v‖+ ‖w‖ for any v, w ∈ V .

3. ‖v‖ = 0 if and only if v is the zero element of V .

All of the normed vector spaces we consider in this thesis are Banach spaces, defined below:

8
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Definition 2.2. A real Banach space is a real vector space V equipped with a norm ‖ · ‖ such that V is

topologically complete with respect to the metric d(x, y) = ‖x− y‖.

Now we can define the concept of dual space. Notice that our definition makes use of the notion of a

continuous map on a vector space. The definition of dual space with this extra qualification is sometimes

called the analytic dual space, in contrast to the algebraic dual space, which can be defined on any vector

space regardless of whether it possesses any topology.

Definition 2.3. Given a real Banach space V , the dual space V ? is the set of all continuous linear maps

v? : V → R. Given v? ∈ V ? and v ∈ V , we will denote v?(v) by 〈v?, v〉.

In the classic example of V = Rn, the dual space V ? is isomorphic to Rn, and we identify 〈v?, v〉 with

the dot product v? · v when v? is viewed as an element of Rn.

The dual of the dual space, (V ?)? naturally contains the original space V via the identification:

v ∈ V ↪→ (v? 7→ 〈v?, v〉) ∈ (V ?)?

When this identification is also a surjection (i.e. when (V ?)? is isomorphic to V ), then we say the space V is

reflexive. All finite dimensional spaces are reflexive.

Given a norm ‖ · ‖ on a vector space V , we can define the dual norm ‖ · ‖?, which can be shown to be a

norm on V ?:

Definition 2.4. Let ‖ · ‖ : V → R be a norm on a vector space V . The dual norm, ‖ · ‖? : V ? → R is defined

by

‖v?‖? = sup
‖v‖≤1

〈v?, v〉

If V is a Banach space with a norm ‖ · ‖, then its dual V ? is also a Banach space with the norm ‖ · ‖?.

A critical consequence of the dual norm is the generalized Cauchy-Schwarz inequality:

Proposition 2.5. For any v ∈ V and v? ∈ V ?, 〈v?, v〉 ≤ ‖v‖‖v?‖?.

Of particular interest are the p-norms, defined on Rn as:

‖(x1, . . . , xn)‖p =

(
n∑
i=1

|xi|p
)1/p

The dual of the p-norm is the q-norm, where 1
p + 1

q = 1. In particular, the 2-norm is dual to itself.

A special case we will often be interested in is when V is a real Hilbert space:

Definition 2.6. A real Hilbert space is a real Banach space V equipped (by re-use of notation) with map

〈·, ·〉 : V × V → R called an inner product such that for all s ∈ R and a, b, C ∈ V :

1. 〈a, b〉 = 〈b, a〉.
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2. 〈a, ·〉 : V → R is a linear map.

3. 〈a, a〉 = ‖a‖2

Any Hilbert space V has the property that V is isomorphic to V ? by v 7→ 〈v, ·〉 (which justifies our re-use

of 〈·, ·〉 notation). Further, using this isomorphism we have ‖ · ‖ = ‖ · ‖?. When working in a Hilbert space

we will often make use of this identification to perform operations in V rather than V ?.

Finally, throughout this thesis we make use a compressed sum notation where subscripts with colons

indicate summations:
∑T
t=1 gt = g1:T ,

∑T
t=1 ‖gt‖2 = ‖g‖21:T ,

∑T
t=1〈gt, wt〉 = 〈g, w〉1:T and similarly for

other indexed sums.

2.1.1 Subgradients and Online Linear Optimization

Recall from Definition 1.2 that a convex function ` satisfies `(tx+ (1− t)y) ≤ t`(x) + (1− t)`(y). For our

purposes, the most important property of a convex function is the existence of subgradients:

Definition 2.7. Let W be a convex subset of some vector space and let ` : W → R be a convex function. For

any x ∈ W , a vector g ∈ W ? is called a subgradient of ` at x, if `(y) ≥ `(x) + 〈g, y − x〉 for all y ∈ W .

The set of subgradients of ` at x is written ∂`(x) and is called the subdifferential, and ∂`(x) 6= ∅ for all x.

Subgradients should be viewed as a generalization of the usual gradient to non-differentiable convex

functions. In particular, we have the following:

Proposition 2.8. Suppose f : W → R is a convex function. If f is differentiable at some point w in the

interior of W , then {∇f(w)} = ∂f(w).

The critical consequence of subgradients in online convex optimization is that the hardest type of convex

losses are actually simple linear losses. The argument is simple: set gt ∈ ∂`t(wt). Then by definition of

subgradient, we have

`t(wt)− `t(ẘ) ≤ 〈gt, wt − ẘ〉

from which we conclude:

RT (ẘ) =

T∑
t=1

`t(wt)− `t(ẘ) ≤
T∑
t=1

〈gt, wt〉 − 〈gt, ẘ〉

This simple fact is extraordinarily powerful. It implies that we can replace the potentially complicated

convex loss function w 7→ `t(w) with the significantly simpler linear loss function w 7→ 〈gt, w〉, and the

regret will only increase. Therefore an algorithm that guarantees low regret when the losses are always linear

(which is called online linear optimization, or OLO) can automatically guarantee low regret with arbitrary

convex losses. Because of this fact, for most of the rest of this manuscript we will consider only linear losses

of the form w 7→ 〈gt, w〉, and take RT (ẘ) =
∑T
t=1〈gt, wt − ẘ〉.

Another important property of a function is Lipschitzness:
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Definition 2.9. A function f : W → R is G-Lipschitz with respect to a norm ‖ · ‖ if

|f(x)− f(y)| ≤ G‖x− y‖

for all x, y in W .

There is a natural connection between Lipschitzness and subgradients, which we will often use implicitly:

Proposition 2.10. If f : W → R is differentiable, then f is G-Lipschitz if and only if ‖∇f(w)‖? ≤ G for all

w ∈W . If f is convex but non-differentiable, then f is G-Lipschitz if and only if all subgradients g ∈ ∂f(w)

satisfy ‖g‖? ≤ G for all w ∈W .

.

2.1.2 Strong Convexity, Smoothness, and Exp-Concavity

We will occasionally make use of the notion of strong convexity, which provides a way of quantifying “how

convex” a function is, with 0-strong convexity being equivalent to the ordinary definition of convex:

Definition 2.11. Given a convex set W , a function f : W → R is a µ-strongly convex with respect to a norm

‖ · ‖ if h(y) = f(x)− µ
2 ‖x− y‖

2 is a convex function for all x ∈W .

A critical fact about strongly-convex functions is the following identity:

Proposition 2.12. Let f : W → R be a µ-strongly convex function. Then for all x, y ∈W and all subgradi-

ents g ∈ ∂f(x),

f(y) ≥ f(x) + 〈g, y − x〉+
µ

2
‖y − w‖2

An inverse concept to strong convexity that we will also use is smoothness, which is defined below:

Definition 2.13. A differentiable function f is L-smooth with respect to some norm ‖ · ‖ if∇f is L-Lipschitz

with respect to the dual norm ‖ · ‖?. When f is convex, this is equivalent to

f(y) ≤ f(x) + 〈g, y − x〉+
L

2
‖y − w‖2

for all x, y and g ∈ ∂f(x).

We will also make use of the concept of an exp-concave function:

Definition 2.14. A function f : W → R is exp-concave if exp(−f) is a concave function. All exp-concave

functions are convex, and all Lipschitz strongly-convex functions are exp-concave.

Finally, we will occasionally make use of the notions of fenchel conjugate and Bregman Divergences,

which we define below:
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Definition 2.15. Let W ⊂ V where V is a real vector space. Suppose f : W → R is a function (not

necessarily convex). The fenchel conjugate of f is denoted f? : V ? → {R,∞} and is defined by

f?(v?) = sup
w∈W
〈v?, w〉 − f(w)

Definition 2.16. Let ψ : V → R be a differentiable convex function. The Bregman divergence associated

with ψ is denoted by Bψ : V × V → R and is given by

Bψ(v, w) = ψ(v)− ψ(w)− 〈∇ψ(w), v − w〉

The Bregman divergence should be thought of as a kind of “squared distance” between v and w that

depends on the function ψ. For the special case ψ(x) = ‖x‖2 and ‖ · ‖ is the 2-norm, Bψ(v, w) = ‖v−w‖2.

Further, notice that the ψ is µ-strongly convex with respect to a norm if and only if Bψ(v, w) ≥ µ
2 ‖v −w‖

2.

The use of the notation f?, commonly reserved for “dual objects” is justified by the following duality

theorem:

Proposition 2.17. Let W ⊂ V be a convex set and V be a reflexive Banach space. For any function

f : W → R, f? is a convex function and (f?)?(w) ≤ f(w) for all w ∈ W . When f is itself a convex

function, then (f?)?(w) = f(w) for all w ∈W .

Proof. First, observe that 〈v?, w〉 − f(w) is convex in v? for all w. Therefore f? is a supremum of convex

functions and so must be convex.

For the second statement, since V is a reflexive Banach space, (V ?)? is naturally isomorphic to V , and

so we may consider (f?)? as a map V → R. Then tracing through the definitions we have:

(f?)?(w) = sup
v?∈V ?

〈v?, w〉 − f?(v?)

= sup
v?∈V ?

〈v?, w〉 −
(

sup
v∈W
〈v?, v〉 − f(v)

)
= sup
v?∈V ?

inf
v∈W
〈v?, w − v〉+ f(v)

Now observe that for any v?, infv∈W 〈v?, w − v〉 + f(v) ≤ f(w) simply by setting v = w. Therefore

(f?)?(w) ≤ f(w).

For the last statement, let g ∈ V ? be a subgradient of f at w (which exists because f is convex). Then we

have
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(f?)?(w) = sup
v?∈V ?

inf
v∈W
〈v?, w − v〉+ f(v)

≥ sup
v?∈V ?

inf
v∈W
〈v?, w − v〉+ f(w) + 〈g, v − w〉

= sup
v?∈V ?

inf
v∈W
〈v? − g, w − v〉+ f(w)

= f(w) + sup
v?∈V ?

inf
v∈W
〈v? − g, w − v〉

Now observe that for v? 6= g, infv∈W 〈v?−g, w−v〉 = −∞, and for v? = g, supv?∈V ? infv∈W 〈v?−g, w−
v〉 = 0. Therefore (f?)?(w) ≥ f(w), which completes the proof.

2.2 Online Subgradient Descent

The simplest online linear optimization algorithm is online subgradient descent. Suppose our domain W

is a bounded subset of a Hilbert space H , and make the standard identification of H with its dual space,

recalling that the dual of the Hilbert space norm is itself. Let ΠW (x) = argminy∈W ‖x−y‖. Then the online

subgradient descent algorithm chooses some initial point w1 and from then on sets:

wt+1 = ΠW (wt − ηgt)

for some parameter η, called the learning rate. This algorithm comes with a simple (yet surprisingly power-

ful) regret guarantee:

Proposition 2.18 ([60]). Suppose W is a subset of a Hilbert space H so that H ' H? and ‖ · ‖ = ‖ · ‖?.

Then online subgradient descent guarantees regret

RT (ẘ) =

T∑
t=1

〈gt, wt − ẘ〉 ≤
‖w1 − ẘ‖2

2η
+
η

2

T∑
t=1

‖gt‖2

Further, suppose w1 = 0 ∈W and each gt satisfies ‖gt‖ ≤ Gmax. Then if we set η = ‖ẘ‖
G
√
T

, we have

RT (ẘ) ≤ ‖ẘ‖Gmax

√
T
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Proof. Let xt+1 = wt − ηgt. Then we have wt+1 = ΠW (xt+1) so that

‖wt+1 − ẘ‖2 ≤ ‖xt+1 − ẘ‖2

= ‖wt − ηgt − ẘ‖2

= ‖wt − ẘ‖2 − 2η〈gt, wt − ẘ〉+ η2‖gt‖2

〈gt, wt − ẘ〉 ≤
1

2η

(
‖wt − ẘ‖2 − ‖wt+1 − ẘ‖2

)
+
η

2
‖gt‖2

RT (ẘ) ≤ 1

2η

T∑
t=1

(
‖wt − ẘ‖2 − ‖wt+1 − ẘ‖2

)
+
η

2

T∑
t=1

‖gt‖2

=
1

2η

(
‖w1 − ẘ‖2 − ‖wT+1 − ẘ‖2

)
+
η

2

T∑
t=1

‖gt‖2

≤ ‖w1 − ẘ‖2

2η
+
η

2

T∑
t=1

‖gt‖2

The last statement follows from observing that if each ‖gt‖ ≤ Gmax, then
∑T
t=1 ‖gt‖2 ≤ G2

maxT .

This simple Proposition shows that (with the right learning rate η) online subgradient descent already

obtains sublinear regret! Surprisingly, this simple algorithm is actually optimal in a certain sense: there exist

domainsW and environments such that for any specifiedGmax, no algorithm can guarantee better regret than
GmaxD

√
T

2 :

Proposition 2.19 ([1]). Let n ≥ 3 and set W to be the ball of radius D
2 in Rn. Then for any Gmax and any

online learning algorithm playing points wt ∈ W in response to gt ∈ Rn with ‖gt‖ ≤ Gmax, there exists a

strategy for choosing gt such that

RT (ẘ) = ‖ẘ‖Gmax

√
T

for some ẘ ∈W with ‖ẘ‖ = D/2.

Proof. The argument is surprisingly simple: since n ≥ 3, given any two vectors x, y ∈ Rn, we can always

find a vector z with 〈z, x〉 = 〈z, y〉 = 0 and ‖z‖ = Gmax. Thus for each t we pick gt such that 〈gt, wt〉 =

〈gt,
∑t−1
i=1 gt〉 = 0 and ‖gt‖ = Gmax. We set ẘ = −D2

∑T
t=1 gt

‖∑T
t=1 gt‖

∈W , and then compute:

RT (ẘ) =

T∑
t=1

〈gt, wt − ẘ〉

= −
T∑
t=1

〈gt, ẘ〉

=
D

2

∥∥∥∥∥
T∑
t=1

gt

∥∥∥∥∥
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So now it remains to show that
∥∥∥∑T

t=1 gt

∥∥∥ = Gmax

√
T . We proceed by induction. Suppose

∥∥∥∑k
t=1 gt

∥∥∥ =

Gmax

√
k for some k. Then∥∥∥∥∥

k+1∑
t=1

gt

∥∥∥∥∥
2

=

∥∥∥∥∥
k∑
t=1

gt

∥∥∥∥∥
2

+ 2

〈
k+1∑
t=1

gt, gk+1

〉
+ ‖gk+1‖2

= G2
maxk + 0 +Gmax

= G2
max(k + 1)

which completes the induction as well as the proof.

This algorithm and lower bound set the basic benchmarks for the field of online convex optimization:

a good algorithm should guarantee regret RT (ẘ) = O(
√
T ), and no algorithm can guarantee a better de-

pendence on T in the worst case. Of course if we make additional assumptions about the environment (e.g.

strongly-convex losses) it is possible to do better than O(
√
T ) regret, and we will explore these possibilities

later.

2.3 Follow the Regularized Leader

In this section we introduce the follow-the-regularized-leader (FTRL) approach to designing online learning

algorithms. This is a classic and very powerful technique that has been used to great effect in the literature

(see [33; 52] for more comprehensive surveys). The intuition behind this technique stems from the closely

related follow-the-leader (FTL) approach, which we will describe first.

The FTL algorithm first chooses some w1 via some arbitrary rule, and then sets wt+1 according to:

wt+1 = argmin
w∈W

t∑
i=1

`i(w)

This has the intuitively pleasing property of being directly analogous to the empirical risk minimization

(ERM) procedure in stochastic optimization: each wt+1 is essentially minimizing the “training error” at time

t.

Unfortunately, however, FTL is not guaranteed to perform well. To see this, consider the following

classical counterexample: in an online linear optimization game, set W = [−1, 1], g1 = 1
2 , and gt = (−1)t

for t > 1. Then we have
∑t
i=1 `i(w) = 1

2 (−1)t+1w for all t, and so the FTL algorithm will set wt = (−1)t

for all t > 1. Therefore
∑T
t=1 gtwt ≥ T −

1
2 . This yields RT (0) ≥ T − 1

2 , which is not sublinear regret.

The failure of FTL in this scenario is due to some inherent instability of the algorithm: it spends all its

time bouncing back and forth between −1 and 1, while stabilizing on any constant value would actually

suffice. This is directly analogous to the phenomenon of over-fitting in stochastic optimization, and the way

to fix it is also directly analogous: regularization.
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The FTRL approach is simple modification to FTL: at each t we choose a regularizer function ψt : W →
R, and set

wt+1 = argmin
w∈W

ψt(w) +

t∑
i=1

`i(w)

Intuitively, we should choose regularizers ψt that stabilize the wt predictions, for example by “pulling” them

in towards the origin.

A classic example is the constant sequence of regularizers ψt(w) = 1
2η‖w‖

2 for all t, for some η. A

little bit of algebra shows that on linear losses with an unbounded W , this yields wt+1 = wt − ηgt, which is

exactly the online subgradient descent update! More formally, the update is

wt+1 = ΠW

(
−η

t∑
i=1

gt

)

which is often called online subgradient descent with lazy projections rather than the greedy projections of

our algorithm in the previous section.

The classic analysis of the FTRL algorithm stems from the so-called FTRL-lemma:

Lemma 2.20 (FTRL-Lemma, see [33; 52] for proofs). Suppose that ψt(w) ≥ ψt−1(w) for all w and t. Then

the regret of the FTRL algorithm is bounded by

RT (ẘ) ≤ ψT (ẘ) +

T∑
t=1

`t(wt)− `t(wt+1)

From this Lemma, we have the following important corollary:

Corollary 2.21. Suppose ψt is µt-strongly convex and ψt(w) ≥ ψt−1(w) for all w and t. Further, suppose

`t is Gt Lipschitz. Then the regret of the FTRL algorithm is bounded by

RT (ẘ) ≤ ψT (ẘ) +

T∑
t=1

G2
t

µt

If we apply this corollary to the regularizers ψt(w) = 1
2η‖w‖

2, which are 1
η -strongly convex, then we get

a regret of

RT (ẘ) ≤ ‖ẘ‖
2

2η
+ TG2

maxη

so that by setting η = ‖ẘ‖
Gmax

√
T

, we again recover O(Gmax‖ẘ‖
√
T ) regret.

2.4 Mirror Descent

The Mirror Descent (MD) framework is an alternative method for designing online linear optimization algo-

rithms [55; 5]. Instead of enforcing stability by adding a regularizer to the the empirical risk minimizer, as in
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FTRL, MD enforces stability by explicitly encouraging wt+1 to be close to wt.

Unlike FTRL, whose update formula can be stated for general online learning problems, our Mirror

Descent update is usually only given for online linear optimization problems. To compute wt+1 given wt and

gt, choose a regularizer function ψt : W → R and set wt+1 by the formula:

wt+1 = argmin
w∈W

〈gt, w〉+Bψt(w,wt)

where hereBψt denotes the Bregman divergence (see Definition 2.16). Again, when we set ψt(w) = 1
η‖w‖

2,

we observe

wt+1 = ΠW (wt − ηgt)

which is exactly the same as our (greedy) online subgradient descent update.

Mirror Descent enjoys the regret bound of the following theorem:

Lemma 2.22 (see e.g. [18]). Mirror descent achieves regret:

RT (ẘ) ≤ Bψ1(ẘ, w1)−BψT (ẘ, wT+1) +

T∑
t=2

Bψt(ẘ, wt)−Bψt−1(ẘ, wt)

+

T∑
t=1

−Bψt(wt+1, wt) + 〈gt, wt − wt+1〉

Just as Lemma 2.20 implies Corollary 2.21 for FTRL with strongly-convex regularizers, the above Lemma

2.22 implies the following Corollary for strongly-convex regularizers:

Corollary 2.23. Suppose each ψt = 1
ηt
ψ for some fixed function ψ non-increasing sequence ηt. Suppose ψ

is 1-strongly convex with respect to a norm ‖ · ‖. Then the regret of Mirror Descent is bounded by

RT (ẘ) ≤ 1

ηT
max
t≤T

Bψt(ẘ, wt) +

T∑
t=1

ηt‖gt‖2?
2

If we set ψt(w) = Gmax

2D
√
T
‖w‖2, which gives us the subgradient descent update, we can apply the above

corollary to recover the subgradient descent regret guarantee:

RT (ẘ) ≤ O(DGmax

√
T )

where D is the diameter of W .

2.5 Coin Betting

The coin betting framework is a recent addition to the general online convex optimization toolkit [40], being

originally introduced in the context of portfolio optimization [46]. Similar to Mirror Descent, the coin betting
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framework is only formulated for the online linear optimization framework. To simplify exposition here, we

will confine ourselves to a 1-dimensional online linear optimization setting in which gt must be in [−1, 1] for

all t (i.e. Gmax = 1). This will allow us to very briefly sketch the main idea - we will provide a more in-depth

description later in Chapter 5.

In our 1-dimensional online linear optimization setup, the regret can be written as:

RT (ẘ) =

T∑
t=1

gtwt − gtẘ

The conceptual idea of the coin betting framework is to pretend that the quantity −
∑T
t=1 gtwt represents

some amount of “money” won by a gambler. To aid this concept, we specify a number ε > 0 called the

“initial endowment”, and define the “wealth” of the algorithm at time T as

WealthT = ε−
T∑
t=1

gtwt

A coin betting algorithm “bets” a signed fraction vt ∈ [−1, 1] of its current wealth on the outcome of the

“coin” gt ∈ [−1, 1] by playing wt = vtWealtht−1, so that Wealtht = Wealtht−1 − gtvtWealtht−1. The

advantage of this approach is that high wealth is equivalent to low regret [35], but lower-bounding the wealth

of an algorithm may be conceptually simpler than upper-bounding the regret because ẘ does not appear in

the definition of wealth.

To see the connection between high wealth and low regret, we can re-write the regret as

RT (ẘ) = ε−WealthT −
T∑
t=1

gtẘ

Now suppose we can lower bound the wealth with a statement of the form

WealthT ≥ fT

(
−

T∑
t=1

gt

)
(2.1)

for some function fT . Then we can conclude

RT (ẘ) = ε−WealthT −
T∑
t=1

gtẘ

≤ ε+

(
−

T∑
t=1

gt

)
ẘ − fT

(
−

T∑
t=1

gt

)
≤ ε+ sup

X
Xẘ − fT (X)

= ε+ f?T (ẘ)
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where the last equality is simply the definition of f?T (see Definition 2.15). Thus by obtaining a lower-bound

on the wealth, we obtain an upper-bound on the regret.

Prior analyses of coin betting algorithms [40; 43] use particular potential functions, similar to the regu-

larizers of FTRL, to choose the betting fractions vt. Our methods for choosing vt, outlined in Chapter 5, are

rather divorced from this approach and we will postpone all discussion of how to choose vt to that Chapter.

2.6 Online Relaxations

The final algorithmic design framework we will discuss is online relaxations [19; 50]. This framework, like

coin betting, is somewhat less classical than the FTRL and Mirror Descent methods, and so we will only

briefly summarize the big idea in this section. The starting point for the online relaxation framework is the

minimax strategy: suppose we are given that all loss functions `t will lie in some set L. Then we might play

a wt according to the “worst-case” rule:

wt = argmin
wt∈W

sup
`t∈L

. . . inf
wt∈W

sup
`T∈L

sup
ẘ∈W

[
T∑
t=1

`t(wt)− `t(ẘ)

]

Essentially, the minimax strategy chooses each point wt so as to minimize the worst-case effect of the

environment. When we use this strategy, we obtain the regret guarantee:

RT (ẘ) ≤ inf
w1∈W

sup
`1∈L

. . . inf
wt∈W

sup
`T∈L

sup
ẘ∈W

[
T∑
t=1

`t(wt)− `t(ẘ)

]

which is known as the value of the online learning game. The minimax strategy is choosing the point wt that

minimizes the conditional value of the game:

Vi = V (`1, . . . , `t, w1, . . . , wt) = inf
wt∈W

sup
`t∈L

. . . inf
wt∈W

sup
`T∈L

sup
ẘ∈W

[
T∑
i=1

`i(wi)−
T∑
i=1

`i(ẘ)

]

Unfortunately, the minimax strategy may not be easy to compute. This is where the idea of relaxations

come in. The basic idea is to design a more computationally tractable function Rel that upper bounds the

conditional value of the game:

Reli ≥ Vi

Then (under suitable conditions on the function RelT ), we play

wt = argmin
w

sup
`t

[`t(wt) + Relt−1] (2.2)
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and we obtain regret

RT (ẘ) ≤ RelT

A good relaxation should have two important properties. First, it should be possible to efficiently compute

the value wt via (2.2). Second, the gap Reli − Vi should be small so that the regret RT (ẘ) is close to the

optimal value.

2.7 Conclusions

In this chapter we have presented an overview of key facts from convex analysis as well as a very rapid look

at the major prior techniques for designing online learning algorithms. Of these, we will make use of the

FTRL and coin betting frameworks in this thesis; the Mirror Descent and online relaxations frameworks are

presented here only for completeness. In the next chapter we will introduce the problem of hyperparameter

tuning and give an overview of the prior work in this area. For the next three chapters, we will consider
exclusively the online linear optimization problem, in which each loss `t has the form `t(w) = 〈gt, w〉.
We will return to nonlinear losses in Chapter 7



Chapter 3

Prior Adaptive Online Algorithms

Now that we have covered the basic mathematical concepts, it is time to introduce the notion of hyper-

parameters in online learning. To do this we recall the online subgradient descent algorithm online linear

optimization when W is a subset of a Hilbert space, presented in Section 2.2:

wt+1 = ΠW (wt − ηgt)

If we assume w1 = 0 (WLOG) and that ‖gt‖ ≤ Gmax for all t, then by Proposition 2.18 we have

RT (ẘ) ≤ ‖ẘ‖
2

2η
+
η

2
TG2

max

So that with the optimal η = ‖ẘ‖
Gmax

√
T

we obtain

RT (ẘ) ≤ ‖ẘ‖Gmax

√
T (3.1)

Further, recall from Proposition 2.19 that, at least up to constant factors, we actually cannot improve on this

regret bound.

Although the regret bound (3.1) is optimal, we were only able to achieve it by a particular setting for the

parameter η, which is usually called the learning rate. If we set η incorrectly, then the regret may be quite a

bit worse.

To illustrate this, consider a simple example: set W = R and let `t(w) = |1−w|+ ztw where each zt is

a uniformly random element of {±2}. Then clearly we have E[`t(w)] = |1− w|, so the natural choice for ẘ

is 1. We plot the value of RT (ẘ) with T = 1000 for various choices of η in Figure 3.1. From the plot, one

can observe that there is a clear optimal choice for η.

In many practical settings we do not know the true value of the parameters Gmax or ‖ẘ‖, and so our

only recourse is to simply guess a value. This necessarily results in slower optimization, and so suggests the

21
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Figure 3.1: Regret of Online Subgradient Descent after 1000 iterations as a function of η

following question, which is central to this thesis:

How can we adapt to unknown parameters?

In this chapter we will give a brief overview of some prior approaches to this problem.

3.1 Adapting to Gmax

First we will cover methods for adapting to the Lipschitz constant Gmax. The result presented here is delib-

erately given using elementary techniques, but significantly improved and more general results can be found

in prior works [25; 17; 36].

In order to adapt to unknown values for Gmax, we will need to slightly generalize our analysis of online

subgradient descent to allow for varying learning rates. Let us consider the case where our domain W is an

entire Hilbert space, and we are given the value of ‖ẘ‖ ahead of time. Let B be the ball of radius ‖ẘ‖ in W .

Then set w1 = 0 and consider the update equation

wt+1 = ΠB(wt − ηtgt)

where now ηt is allowed to vary from round to round, and even may depend on gt. We can mimic the proof

of Proposition 2.18 to obtain:

Proposition 3.1. Suppose w1 = 0 and wt+1 = ΠBwt − ηtgt for all t ≥ 2. Further, suppose ηt ≤ ηt−1 for

all t. Then we have

RT (ẘ) ≤ 5‖ẘ‖2

2ηT
+

T∑
t=1

ηt
2
‖gt‖2
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Proof. Similar to the proof of Proposition 2.18, let xt+1 = wt − ηtgt. Then we have wt+1 = ΠB(xt+1) so

that

‖wt+1 − ẘ‖2 ≤ ‖xt+1 − ẘ‖2

= ‖wt − ηtgt − ẘ‖2

= ‖wt − ẘ‖2 − 2ηt〈gt, wt − ẘ〉+ η2
t ‖gt‖2

〈gt, wt − ẘ〉 ≤
1

2ηt

(
‖wt − ẘ‖2 − ‖wt+1 − ẘ‖2

)
+
ηt
2
‖gt‖2

Now observe that RT (ẘ) =
∑T
t=1〈gt, wt − ẘ〉 to obtain

RT (ẘ) ≤
T∑
t=1

1

2ηt

(
‖wt − ẘ‖2 − ‖wt+1 − ẘ‖2

)
+
ηt
2

T∑
t=1

‖gt‖2

=

(
1

2η1
‖w1 − ẘ‖2 −

1

2ηT
‖wT+1 − ẘ‖2

)
+

T∑
t=2

(
1

2ηt
− 1

2ηt−1

)
‖wt − ẘ‖2 +

T∑
t=1

ηt
2
‖gt‖2

≤
(

1

2η1
‖w1 − ẘ‖2 −

1

2ηT
‖wT+1 − ẘ‖2

)
+

T∑
t=2

(
1

2ηt
− 1

2ηt−1

)
4‖ẘ‖2 +

T∑
t=1

ηt
2
‖gt‖2

=

(
1

2η1
‖w1 − ẘ‖2 −

1

2ηT
‖wT+1 − ẘ‖2

)
+

2‖ẘ‖2

ηT
− 2‖ẘ‖2

η1
+

T∑
t=1

ηt
2
‖gt‖2

≤ 5‖ẘ‖2

2ηT
+

T∑
t=1

ηt
2
‖gt‖2

where in the last line we used w1 = 0 and dropped negative values.

The final ingredient is a generalization of the observation that
∑T
t=1

1√
t
≤ 2
√
T :

Lemma 3.2. If x1, . . . , xT are non-negative numbers, such that x1 ≥ 0 then

T∑
t=1

xt√∑t
i=1 xi

≤ 2

√√√√ T∑
t=1

xt

Proof. By convexity of square root, we have

xt

2
√∑t

i=1 xt

≤

√√√√ t∑
i=1

xi −

√√√√t−1∑
i=1

xi

Summing over t and telescoping the right hand side completes the proof.
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With this Lemma and Proposition in hand, we can propose an adaptive learning rate schedule: set

ηt =
‖ẘ‖√∑t
i=1 ‖gi‖2

to obtain

RT (ẘ) ≤ 5‖ẘ‖2

2ηT
+

T∑
t=1

ηt
2
‖gt‖2

≤ 7

2
‖ẘ‖

√√√√ T∑
t=1

‖gt‖2

≤ 7

2
‖ẘ‖Gmax

√
T

This result says that, so long as we know the value of ‖ẘ‖, we can adapt to an unknown Gmax value

simply by adaptively tuning the learning rate in online subgradient descent. This is extremely encouraging:

we are able to pay only a constant factor for this extra adaptivity! In fact, the bound ‖ẘ‖
√∑T

t=1 ‖gt‖2 can

be quite a bit better than ‖ẘ‖Gmax

√
T in some settings, as we will discuss later in Section 7.1.

3.2 Adapting to ‖ẘ‖

In this section we summarize prior work on adapting to an unknown value for ‖ẘ‖, given the value of Gmax.

The algorithms in this section are quite a bit more complicated than in the previous section, so we will only

state results without any proofs.

The first algorithm to adapt to ‖ẘ‖ we are aware of of is that of [32]. In a 1-dimensional problem with

W = R, and given any user-specified ε, their algorithm obtains a regret bound of

RT (ẘ) ≤
√

2√
2− 1

|ẘ|
√
TG2

max + 1

(
log

(
|w|
ε

(2G2
maxT + 2)5/2

)
− 1

)
+ ε

There are two peculiarities of this bound. The first is the presence of the extra parameter ε. The second is the

additional logarithmic term. Let us unpack each of these in turn.

The parameter ε is the regret at the origin: RT (0) ≤ ε. It is fairly easy to see that no algorithm can

actually guarantee RT (0) ≤ 0 without knowing ‖ẘ‖ = 0 ahead of time, and so the value ε parametrizes how

much origin-regret we are willing to tolerate. Notice that while this is certainly an extra parameter, it has a

relatively mild effect on the bound: the additive ε term does not grow with T , and ε is only present inside the

logarithm of the term that does grow with T .

The logarithmic term makes this bound asymptotically worse than the ideal ‖ẘ‖Gmax

√
T we are looking

for. Unfortunately, it turns out to be unavoidable: in the same work, [32] prove that any algorithm that
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guarantees RT (0) ≤ ε can be made to suffer regret at least:

RT (ẘ) ≥ Ω

‖ẘ‖Gmax

√√√√T log

(
‖ẘ‖Gmax

√
T

ε

)
for some ‖ẘ‖. Notice that if we set ε = Ω(‖ẘ‖Gmax

√
T ), then the logarithmic term disappears. Unfortu-

nately, since we do not know ‖ẘ‖, this is not possible. This lower bound implies that the adapting to unknown

‖ẘ‖ is in fact fundamentally harder than adapting to an unknown Gmax, by an extra logarithmic factor.

After the initial work of [32], [38] developed an improved algorithm that operates when W is a Hilbert

space rather than simple 1-dimensional domain, again achieving a regret guarantee of

RT (ẘ) = O(‖ẘ‖Gmax

√
T log(‖ẘ‖Gmax

√
T/ε+ 1) + ε)

Later a variety of subsequent works [39; 35; 19; 40] were able to improve the logarithmic factor in the

algorithms to achieve regret matching the lower bound in any Hilbert space:

RT (ẘ) = O(‖ẘ‖Gmax

√
T log(‖ẘ‖Gmax

√
T/ε+ 1) + ε)]

Interestingly, although we saw that algorithms that adapt to unknown Gmax can achieve a dependence

on
√∑T

t=1 ‖gt‖2? rather than Gmax

√
T , the best that any of these algorithms that adapt to ‖ẘ‖ obtain is√

Gmax

∑T
t=1 ‖gt‖?. We will be able to improve upon this later in Chapter 5.

3.3 Strong Convexity

In this section we will consider strongly convex losses `t. Recall that a function `t is µ-strongly convex if

`t(x+ δ) ≥ `t(x) + 〈g, δ〉+
µ

2
‖δ‖2

for all x and δ and g ∈ ∂`t(x). This implies that

`t(wt)− `t(ẘ) ≤ 〈gt, wt − ẘ〉 −
µ

2
‖wt − ẘ‖2

RT (ẘ) ≤
T∑
t=1

〈gt, wt − ẘ〉 −
µ

2
‖wt − ẘ‖2

The above observation gives us a hint that strong convexity may make an online learning problem fundamen-

tally easier than online linear optimization because the −µ2 ‖wt − ẘ‖
2 strictly decreases the regret. We can

indeed take advantage of this inequality using online subgradient descent with a different learning rate (as

observed in [24]): instead of ηt = O(1/
√
t), we use ηt = O(1/µt).



CHAPTER 3. PRIOR ADAPTIVE ONLINE ALGORITHMS 26

Proposition 3.3. Suppose w1 = 0 and wt+1 = ΠBwt − ηtgt for all t ≥ 2 with ηt = 1
µt . Then we have

RT (ẘ) ≤ G2
max

µ
log(T )

Proof. Similar to the proof of Proposition 3.1, we have

〈gt, wt − ẘ〉 ≤
1

2ηt

(
‖wt − ẘ‖2 − ‖wt+1 − ẘ‖2

)
+
ηt
2
‖gt‖2

Now observe that RT (ẘ) =
∑T
t=1〈gt, wt − ẘ〉 −

µ
2 ‖wt − ẘ‖

2 to obtain

RT (ẘ) ≤
T∑
t=1

1

2ηt

(
‖wt − ẘ‖2 − ‖wt+1 − ẘ‖2

)
− µ

2
‖wt − ẘ‖2 +

ηt
2

T∑
t=1

‖gt‖2

=

(
1

2η1
− µ

2

)
‖w1 − ẘ‖2 −

1

2ηT
‖wT+1 − ẘ‖2 +

T∑
t=2

(
1

2ηt
− µ

2

1

2ηt−1

)
‖wt − ẘ‖2 +

T∑
t=1

ηt
2
‖gt‖2

=

T∑
t=1

ηt
2
‖gt‖2

≤ G2
max

2µ

T∑
t=1

1

t

≤ G2
max

µ
log(T )

Thus we we see that strong convexity allows us to go from
√
T regret to log(T ) regret. Notice that the

algorithm seems to adapt to Gmax without any information about it, but that it does require knowledge of µ.

This concludes our tour of the prior work in adaptive online learning. The next chapters will describe our

contributions to the field, beginning with lower bounds for adapting to ‖w‖ and Gmax simultaneously.



Chapter 4

An Optimal Parameter-free Algorithm

In this chapter we first prove a lower bound on the regret of any algorithm that must adapt to both Gmax

and ‖ẘ‖, and then provide an algorithm that meets this lower bound in any real Hilbert space. I originally

published a sub-optimal lower bound and algorithm in [13], and then improved both to the optimal results

presented here in [12], which forms the core of the prose in this chapter.

4.1 A Lower-Bound for Adapting to ‖ẘ‖ and Gmax

The main result of this section is that, while prior work can adapt to either ‖ẘ‖ or Gmax with relatively small

penalty to the regret, it is actually impossible to adapt to both simultaneously without suffering a potentially

exponential penalty1. If we defineGt = maxi≤t ‖g‖?, there is in fact a frontier of lower bounds that trade-off

between a ‖ẘ‖Gmax

√
T log(‖ẘ‖T ) term and a exp(maxtGt/Gt−1) term along two dimensions, which we

parametrize by k and γ. Along the first dimension, the exponential penalty is reduced to exp((Gt/Gt−1)/k2)

for any k > 0 at the expense of rescaling the regret’s
√
T term to k‖ẘ‖Gmax

√
T log(‖ẘ‖T ). Along the

second dimension, the logarithm’s power in the
√
T term is reduced to ‖ẘ‖Gmax

√
T logγ(‖ẘ‖T ) for any

γ ∈ (1/2, 1] at the expense of increasing the exponential penalty to exp((Gt/Gt−1)1/(2γ−1)). We prove the

lower bounds by constructing a specific adversarial loss sequence, and then we provide a family of algorithms

whose regret matches the lower bound frontier for any k and γ. First we describe our adversarial loss sequence

and lower bound frontier along the k dimension, and then we extend the argument to obtain the full two

dimensional frontier parametrized by both k and γ.

4.1.1 Warm-up: a Suboptimal Lower-Bound

Before describing our full frontier, we prove a somewhat worse bound (Theorem 4.1) whose proof commu-

nicates the main intuition behind our optimal method. The proof of the full lower bound (Theorem 4.3) is

1This lower bound resolved a COLT 2016 open problem (Parameter-Free and Scale-Free Online Algorithms) [41] in the negative.

27
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significantly more complicated, and postponed to Section 4.A.

Theorem 4.1. For any constants c, d, ε > 0, there exists a T and an adversarial strategy picking gt ∈ R in

response to the outputs of an online learning algorithm choosing wt ∈ R such that regret is:

RT (ẘ) =

T∑
t=1

gtwt − gtẘ

≥ (d+ c‖ẘ‖ log ‖ẘ‖)Gmax

√
T log(Gmax + 1) + dGmax exp((2T )1/2−ε)

≥ (d+ c‖ẘ‖ log ‖ẘ‖)Gmax

√
T log(Gmax + 1) + dGmax exp

[(
max
t

Gt
Gt−1

)1/2−ε
]

for some ẘ ∈ R where Gmax = maxt≤T ‖gt‖ and Gt = maxt′≤t ‖gt′‖.

Proof. We prove the theorem by showing that for sufficiently large T , the adversary can “checkmate” the

learner by presenting it only with the subgradient gt = −1. If the learner fails to have wt increase quickly,

then there is a ẘ � 1 against which the learner has high regret. On the other hand, if the learner ever does

makewt higher than a particular threshold, the adversary immediately punishes the learner with a subgradient

gt = 2T , again resulting in high regret.

Let T be large enough such that both of the following hold:

T
4 exp( T 1/2

4 log(2)c ) > k log(2)
√
T + k exp((2T )1/2−ε) (4.1)

T
2 exp( T 1/2

4 log(2)c ) > 2kT exp((2T )1/2−ε) + 2kT
√
T log(2T + 1) (4.2)

The adversary plays the following strategy: for all t ≤ T , so long as wt < 1
2 exp(T 1/2/4 log(2)c), give

gt = −1. As soon as wt ≥ 1
2 exp(T 1/2/4 log(2)c), give gt = 2T and gt = 0 for all subsequent t. Let’s

analyze the regret at time T in these two cases.

Case 1: wt < 1
2 exp(T 1/2/4 log(2)c) for all t:

In this case, let u = exp(T 1/2/4 log(2)c). Then Gmax = 1, maxt
Gt
Gt−1

= 1, and using (4.1) the learner’s

regret is at least

RT (u) ≥ Tu− T 1

2
exp( T 1/2

4 log(2)c )

= 1
2Tu

= cu log(u)
√
T log(2) + T

4 exp( T 1/2

4 log(2)c )

> cu log(u)Gmax

√
T log(Gmax + 1) + kGmax

√
T log(Lmax + 1) + kLmax exp((2T )1/2−ε)

= (k + cu log u)Gmax

√
T log(Gmax + 1) + kGmax exp

[
(2T )

1/2−ε
]

Case 2: wt ≥ 1
2 exp(T 1/2/4 log(2)c) for some t:
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In this case, Gmax = 2T and maxt
Gt
Gt−1

= 2T . For u = 0, using (4.2), the regret is at least

RT (u) ≥ T
2 exp( T 1/2

4 log(2)c )

≥ 2kT exp((2T )1/2−ε) + 2kT
√
T log(2T + 1)

= kGmax exp((2T )1/2−ε) + kGmax

√
T log(Gmax + 1)

= (k + cu log u)Lmax

√
T log(Gmax + 1) + kGmax exp

[
(2T )

1/2−ε
]

4.1.2 Optimal Bound: Trade-offs in the multiplicative constant k

In the next two sections we will provide the tight version of our lower bound. Given an algorithm, we

establish a lower bound on its performance by constructing an adversarial sequence of subgradients gt ∈ R.

This sequence sets gt = −1 for T − 1 iterations, where T is chosen adversarially but can be made arbitrarily

large, then sets gT = O(k
√
T ) in a very similar manner to the warm-up in the previous section. We tighten

the analysis to prove that this simple strategy forces the algorithm to experience regret that is exponential in
√
T/k. We then express

√
T/k as a constant multiple of 1

k2Gt/Gt−1, where Gt = maxt′≤t |gt|, capturing

the algorithm’s sensitivity to the big jump in the gradients between T − 1 and T in the adversarial sequence.

Note that although our lower bound is stated for the case where W = R, it equally well applies to any real

vector space by choosing any 1-dimensional subspace and considering the projections of wt to that subspace.

The cost that an algorithm pays when faced with the adversarial sequence is stated formally in the fol-

lowing Theorem.

Theorem 4.2. For any k > 0, T0 > 0, and any online learning algorithm picking wt ∈ R, there exists a

T > T0, a ẘ ∈ R, and a fixed sequence gt ∈ R on which the regret is:

RT (ẘ) =

T∑
t=1

gtwt − gtẘ

≥ k‖ẘ‖Gmax log(T‖ẘ‖+ 1)
√
T +

Gmax

T − 1
exp

(√
T − 1

8k

)
≥ k‖ẘ‖Gmax log(T‖ẘ‖+ 1)

√
T + max

t≤T
Gmax

G2
t−1

‖g‖21:t−1

exp

[
1

2

(
Gt/Gt−1

288k2

)]
where Gt = maxt′≤t ‖gt′‖, and Gmax = GT = maxt≤T ‖gt‖.

The first inequality in this bound demonstrates that it is impossible to guarantee sublinear regret without

prior information about ‖ẘ‖ or Gmax while maintaining O(Gmax‖ẘ‖ log(‖ẘ‖)) dependence on Gmax and

‖ẘ‖,2 but the second inequality provides hope that if the loss sequence is limited to small jumps in Gt, then

2it is possible to guarantee sublinear regret in exchange for O(Gmax‖ẘ‖2) dependence, see Orabona and Pál [42]
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we might be able to obtain sublinear regret. Specifically, from the first inequality, observe that in order to

bring the exponential term to lower than O(T ), the value of k needs to be at least Ω(
√
T/ log(T )), which

causes the non-exponential term to become O(T ). However, the second inequality emphasizes that our high

regret is the result of a large jump in the value of Gt, so that we might expect to do better if there are no such

large jumps. Our upper bounds are given in the form of algorithms that guarantee regret matching the second

inequality of this lower bound for any k, showing that we can indeed do well so long as Gt does not increase

too quickly.

4.1.3 Optimal Bound: Trade-offs in the Logarithmic exponent γ

To extend the frontier to the γ dimension, we modify our adversarial sequence by setting gT = O(γk1/γT 1−1/2γ)

instead of O(k
√
T ). This results in a penalty that is exponential in (

√
T/k)1/γ , which we express as a mul-

tiple of (Gt/γk
2Gt−1)1/(2γ−1). Since γ ∈ (1/2, 1], we are getting a larger exponential penalty even though

the adversarial subgradients have decreased in size, illustrating that decreasing the logarithmic factor is very

expensive.

The full frontier is stated formally in the following Theorem.

Theorem 4.3. For any γ ∈ (1/2, 1], k > 0, T0 > 0, and any online learning algorithm picking wt ∈ R, there

exists a T > T0, a u ∈ R, and a sequence g1, . . . , gT ∈ R with ‖gt‖ ≤ max(1, 18γ(4k)1/γ(t − 1)1−1/2γ)

on which the regret is:3

RT (ẘ) =

T∑
t=1

gtwt − gtẘ

≥ k‖ẘ‖G logγ(T‖ẘ‖+ 1)
√
T +

Gmax

T − 1
exp

(
(T − 1)1/2γ

2(4k)1/γ

)
≥ k‖ẘ‖Gmax logγ(T‖ẘ‖+ 1)

√
T + max

t≤T
Gmax

G2
t−1

‖g‖21:t−1

exp

[
1

2

(
Gt/Gt−1

288γk2

)1/(2γ−1)
]

where Gt = maxt′≤t ‖gt′‖ and Gmax = GT = maxt≤T ‖gt‖.

Again, the first inequality tells us that adversarial sequences can always deny the algorithm sublinear

regret and the second inequality says that so long as Gt grows slowly, we can still hope for sublinear regret.

This time, however, the second inequality appears to blow up when γ → 1/2. In this case, Gmax = O(k2)

regardless of T and so the value ofGt/Gt−1 is never very large, keeping the exponent in the second inequality

less than 1 so that the singularity in the exponent does not send the bound to infinity. This singularity at

γ = 1/2 tells us that the adversary does not need to be “very adversarial” in order to force us to experience

exponential regret.

To gain some more intuition for what happens at γ = 1/2, consider a model in which the adversary

must commit ahead of time to some Gmax (which corresponds to picking k), unknown to the optimization
3The same result holds with in expectation for randomized algorithms with a deterministic sequence gt.



CHAPTER 4. AN OPTIMAL PARAMETER-FREE ALGORITHM 31

algorithm, such that ‖gt‖ ≤ Gmax for all t. When a bound Gbound ≥ Gmax is known to the algorithm

ahead of time, then it is possible to achieve O(‖ẘ‖Gbound
√
T log(‖ẘ‖T )) regret (e.g. see Orabona and Pál

[40]). However, note that when γ = 1/2, committing to an appropriate Gmax would not prevent an adversary

from using the sequence of Theorem 4.3. Therefore, Theorem 4.3 tells us that algorithms which achieve

O(‖ẘ‖Gbound
√
T log(‖ẘ‖T )) regret are inherently very fragile because if the bound is incorrect (which

happens for large enough k), then the adversary can force the algorithm to suffer G exp(O(T/G)) regret for

arbitrarily large T .

Continuing with the model in which the adversary must commit to some unknown G ahead of time,

suppose we are satisfied with O(‖ẘ‖Gmax

√
T logγ(‖ẘ‖T )) regret for some γ > 1/2. In this case, after

some (admittedly possibly very large) number of iterations, the exponential term in the second inequality

no longer grows with T , and the adversarial strategy of Theorem 4.3 is not available because this strategy

requires a choice of G that depends on T . Therefore an algorithm that guarantees regret matching the second

inequality for some k and γ will obtain an asymptotic dependence on T that is only logγ(T )
√
T .

These lower bounds show that there is a fundamental frontier of tradeoffs parameterized γ and k. Now

we proceed to derive parameter-free algorithms that match any point on the frontier.

4.2 Parameter-free FTRL Analysis

In this section we provide the tools used to derive algorithms whose regret matches the lower bounds in the

previous section. Our algorithms make use of the Follow-the-Regularized-Leader (FTRL) framework, as

previously introduced in Section 2.3. We briefly recall them main idea: after seeing the tth loss of the online

learning game, an FTRL algorithm chooses a function ψt (called a regularizer), and picks wt+1 according to:

wt+1 = argmin
w∈W

ψt(w) +

t∑
t′=1

`t′(w)

Careful choice of regularizers is obviously crucial to the success of such an algorithm, and in the fol-

lowing we provide simple conditions on ψ sufficient for FTRL to achieve optimal regret without knowing

‖ẘ‖ or Gmax. Our analysis generalizes many previous works for online learning with unconstrained W

(e.g. Orabona [38, 39]; Cutkosky and Boahen [13]) in which regret bounds were proved via arduous ad-hoc

constructions. Further, our techniques improve the regret bound in the algorithm that does not require prior

information of Cutkosky and Boahen [13]. We note that an alternative set of conditions on regularizers was

given in Orabona and Pál [40] via an elegant reduction to coin-betting algorithms, but this prior analysis

requires a known bound on Gmax.

Our regularizers ψt take the form ψt(w) = k
atηt

ψ(atw) for some fixed function ψ and numbers at and ηt.

The value k specifies the corresponding tradeoff parameter in the lower-bound frontier, while the function ψ

specifies the value of γ. The values for at and ηt do not depend on k or ψ, but are carefully chosen functions

of the observed gradients g1, . . . , gt that guarantee the desired asymptotics in the regret bound.
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4.2.1 Generalizing Strong Convexity

Prior analyses of FTRL (such as the basic theorems presented in Section 2.3) often make use of strongly-

convex regularizers to simplify regret analysis, but it turns out that strongly-convex regularizers cannot match

our lower bounds. Fortunately, there is a simple generalization of strong-convexity that will suffice for our

purposes. This generalized notion is very similar to a dual version of the “local smoothness” condition used

in Orabona [38]. We define this generalization of strong-convexity below.

Definition 4.4. Let W be a convex space and let σ : W 2 → R by an arbitrary function. We say a convex

function f : W → R is σ(·, ·)-strongly convex with respect to a norm ‖ · ‖ if for all x, y ∈W and g ∈ ∂f(x)

we have

f(y) ≥ f(x) + g · (y − x) +
σ(x, y)

2
‖x− y‖2

As a special case (and by abuse of notation), for any function σ : W → R we define σ(w, z) = min(σ(w), σ(z))

and define σ(·)-strong convexity accordingly.

We’ll usually just write σ-strongly convex instead of σ(·, ·)-strongly convex since our definition is purely

a generalization of the standard one. We will also primarily make use of the special case σ(w, z) =

min(σ(w), σ(z)).

4.2.2 Adaptive regularizers

Now we present a few definitions that will allow us to easily construct sequences of regularizers that achieve

parameter-free regret bounds. Intuitively, we require that our regularizers ψt grow super-linearly in order to

ensure that ψt(w) + g1:tw always has a minimal value. However, we do not want ψt to grow quadratically

because this will result in O(‖ẘ‖2) regret. The formal requirements on the shape of ψt are presented in the

following definition:

Definition 4.5. Let W be a closed convex subset of a vector space such that 0 ∈ W . Any differentiable

function ψ : W → R that satisfies the following conditions:

1. ψ(0) = 0.

2. ψ(x) is σ-strongly-convex with respect to some norm ‖ · ‖ for some σ : W → R such that ‖x‖ ≥ ‖y‖
implies σ(x) ≤ σ(y).

3. For any C, there exists a B such that ψ(x)σ(x) ≥ C for all ‖x‖ ≥ B.

is called a (σ, ‖ · ‖)-adaptive regularizer. We also define the useful auxiliary function h(w) = ψ(w)σ(w) and

by mild abuse of notation, we define h−1(x) = maxh(w)≤x ‖w‖.

We will use adaptive regularizers as building blocks for our FTRL regularizers ψt, so it is important to

have examples of such functions. We will provide some tools for finding adaptive regularizers in Section
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4.3, but to keep an example in mind for now, we remark that ψ(w) = (‖w‖ + 1) log(‖w‖ + 1) − ‖w‖ is a(
1

‖·‖+1 , ‖ · ‖
)

-adaptive regularizer where ‖ · ‖ is the G2 norm.

The following definition specifies the sequences ηt and at which we use to turn an adaptive regularizer

into the regularizers used for our FTRL algorithms:

Definition 4.6. Let ‖ · ‖ be a norm and ‖ · ‖? be the dual norm (‖x‖? = sup‖y‖=1 x · y). Let g1, . . . , gT be a

sequence of subgradients and set Gt = maxt′≤t ‖gt‖?. Define the sequences 1
ηt

and at recursively by:

1

η2
0

= 0

1

η2
t

= max

(
1

η2
t−1

+ 2‖gt‖2?, Gt‖g1:t‖?
)

a1 =
1

(G1η1)2

at = max

(
at−1,

1

(Gtηt)2

)
Suppose ψ is a (σ, ‖ · ‖)-adaptive regularizer and k > 0. Define

ψt(w) =
k

ηtat
ψ(atw)

wt+1 = argmin
w∈W

ψt(w) + g1:t · w

Now without further ado, we give our regret bound for FTRL using these regularizers.

Theorem 4.7. Suppose ψ is a (σ, ‖ · ‖)-adaptive regularizer and g1, . . . , gT is some arbitrary sequence of

subgradients. Let k ≥ 1, and let ψt be defined as in Definition 4.6.

Set

σmin = inf
‖w‖≤h−1(10/k2)

kσ(w)

D = max
t

G2
t−1

(‖g‖2?)1:t−1
h−1

(
5Gt

k2Gt−1

)
QT = 2

‖g‖1:T

Gmax

Then FTRL with regularizers ψt achieves regret

RT (ẘ) ≤ k

QT ηT
ψ(QTu) +

45Gmax

σmin
+ 2GmaxD

≤ kGmax
ψ(2uT )√

2T
+

45Gmax

σmin
+ 2GmaxD
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This bound consists of three terms, the first of which will correspond to the
√
T term in our lower bounds

and the last of which will correspond to the exponential penalty. The middle term is a constant independent of

u and T . To unpack a specific instantiation of this bound, consider the example adaptive regularizer ψ(w) =

(‖w‖+ 1) log(‖w‖+ 1)−‖w‖. For this choice of ψ, we have ψ(2uT )/
√

2T = O(‖ẘ‖
√
T log(T‖ẘ‖+ 1))

so that the first term in the regret bound matches the
√
T term in our lower bound with γ = 1. Roughly

speaking, h(w) ≈ log(w), so that h−1(x) ≈ exp(x) and the quantity D = maxt
G2
t−1

(‖g‖2?)1:t−1
h−1

(
5Gt

k2Gt−1

)
matches the exponential penalty in our lower bound. In the following section we formalize this argument and

exhibit a family of adaptive regularizers that enable us to design algorithms whose regret matches any desired

point on the lower bound frontier.

4.3 Optimal Algorithms

In this section we construct specific adaptive regularizers in order to obtain optimal algorithms using our

regret upper bound of Theorem 4.7. The results in the previous section hold for arbitrary norms, but from this

point on we will focus on theG2 norm. Our regret upper bound expresses regret in terms of the function h−1.

Inspection of the bound shows that if h−1(x) is exponential in x1/(2γ−1), and ψ(w) = O(‖w‖ logγ(‖w‖ +

1)), then our upper bound will match (the second inequality in) our lower bound frontier. The following

Corollary formalizes this observation.

Corollary 4.8. If ψ is an (σ, ‖ · ‖)-adaptive regularizer such that

ψ(x)σ(x) ≥ Ω(γ log2γ−1(‖x‖))

ψ(x) ≤ O(‖x‖ logγ(‖x‖+ 1))

then for any k ≥ 1, FTRL with regularizers ψt(w) = k
atηt

ψ(atw) yields regret

RT (ẘ) ≤ O

[
kGmax

√
T‖ẘ‖ logγ(T‖ẘ‖+ 1) + max

t

GmaxG
2
t−1

‖g‖21:t−1

exp

[
O

((
Gt

k2γGt−1

)1/(2γ−1)
)]]

We call regularizers that satisfy these conditions γ-optimal.

With this Corollary in hand, to match our lower bound frontier we need only construct a γ-optimal

adaptive regularizer for all γ ∈ (1/2, 1]. Constructing adaptive regularizers is made much simpler with

Proposition 4.9 below. This proposition allows us to design adaptive regularizers in high dimensional spaces

by finding simple one-dimensional functions. It can be viewed as taking the place of arguments in prior work

[35; 40; 13] that reduce high dimensional problems to one-dimensional problems by identifying a “worst-

case” direction for each subgradient gt.

Proposition 4.9. Let ‖ · ‖ be the G2 norm (‖w‖ = ‖w‖2 =
√
w · w). Let φ be a three-times differentiable

function from the non-negative reals to the reals that satisfies
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1. φ(0) = 0.

2. φ′(x) ≥ 0.

3. φ′′(x) ≥ 0.

4. φ′′′(x) ≤ 0.

5. limx→∞ φ(x)φ′′(x) =∞.

Then ψ(w) = φ(‖w‖) is a (φ′′(‖ · ‖), ‖ · ‖)-adaptive regularizer.

Now we are finally ready to derive our first optimal regularizer:

Proposition 4.10. Let ‖ · ‖ be the G2 norm. Let φ(x) = (x+ 1) log(x+ 1)− x. Then ψ(w) = φ(‖w‖) is a

1-optimal, (φ′′(‖ · ‖), ‖ · ‖)-adaptive regularizer.

Proof. We can use Proposition 4.9 to prove this with a few simple calculations:

φ(0) = 0

φ′(x) = log(x+ 1)

φ′′(x) =
1

x+ 1

φ′′′(x) = − 1

(x+ 1)2

φ(x)φ′′(x) = (log(x+ 1)− x

x+ 1
)

Now the conclusion of the Proposition is immediate from Proposition 4.9 and inspection of the above equa-

tions.

A simple application of Corollary 4.8 shows that FTRL with regularizersψt(w) = k
ηt

((‖w‖+1) log(‖w‖+
1)− ‖w‖) matches our lower bound with γ = 1 for any desired k.

In fact, the result of Proposition 4.10 is a more general phenomenon:

Proposition 4.11. Let ‖ · ‖ be the G2 norm. Given γ ∈ (1/2, 1], set φ(x) =
∫ x

0
logγ(z + 1) dz. Then

ψ(w) = φ(‖w‖) is a γ-optimal, (φ′′(‖ · ‖), ‖ · ‖)-adaptive regularizer.

Proof.

φ(0) = 0

φ′(x) = logγ(x+ 1)

φ′′(x) = γ
logγ−1(x+ 1)

x+ 1

φ′′′(x) = γ(γ − 1)
logγ−2(x+ 1)

(x+ 1)2
− γ logγ−1(x+ 1)

(x+ 1)2
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Since γ ≤ 1, φ′′′(x) ≤ 0 and so φ satisfies the first four conditions of Proposition 4.9. It remains to

characterize φ(x) and φ(x)φ′′(x), which we do by finding lower and upper bounds on φ(x):

For a lower bound, we have

1

2

d

dx
x logγ(x+ 1) =

1

2

(
logγ(x+ 1) + γ

x

x+ 1
logγ−1(x+ 1)

)
≤ logγ(x+ 1)

where the inequality follows since x
x+1 ≤ log(x + 1), which can be verified by differentiating both sides.

Therefore φ(x) ≥ 1
2x logγ(x+ 1). This lower-bound implies

φ(x)φ′′(x) ≥ 1

2
γ

x

x+ 1
log2γ−1(x+ 1)

which gives us the last condition in Proposition 4.9, as well as the first condition for γ-optimality.

Similarly, we have

d

dx
x logγ(x+ 1) =

(
logγ(x+ 1) + γ

x

x+ 1
logγ−1(x+ 1)

)
≥ logγ(x+ 1)

This implies φ(x) ≤ x log(x+ 1) which gives us the second condition for γ-optimality.

Thus, by applying Theorem 4.7 to the regularizers of Proposition 4.11, we have a family of algorithms

that matches our family of lower-bounds up to constants. The updates for these regularizers are extremely

simple:

wt+1 = − g1:t

at‖g1:t‖

[
exp

(
(ηt‖g1:t‖/k)1/γ

)
− 1
]

The guarantees of Theorem 4.7 do not make any assumptions on how k is chosen, so that we could

choose k using prior knowledge if it is available. For example, if a bound on Gt/Gt−1 is known, we can set

k ≥
√

maxtGt/Gt−1. This reduces the exponentiated quantity maxtGt/k
2Gt−1 to a constant, leaving a

regret of O(‖ẘ‖ log(T‖ẘ‖+ 1)Gmax

√
T maxtGt/Gt−1). This bound holds without requiring a bound on

Gmax. Thus our algorithms open up an intermediary realm in which we have no bounds on ‖ẘ‖ or Gmax,

and yet we can leverage some other information to avoid the exponential penalty.

4.4 FREEREX

Now we explicitly describe an algorithm, along with a fully worked-out regret bound. The norm ‖ · ‖ used

in the following is the G2 norm (‖w‖ =
√
w · w), and our algorithm uses the adaptive regularizer ψ(w) =

(‖w‖+1) log(‖w‖+1)−‖w‖. Similar calculations could be performed for arbitrary γ using the regularizers



CHAPTER 4. AN OPTIMAL PARAMETER-FREE ALGORITHM 37

of Proposition 4.11, but we focus on the γ = 1 because it allows for simpler and tighter analysis through

our closed-form expression for ψ. Since we do not require any information about the losses, we call our

algorithm FREEREX for Information-free Regret via exponential updates.

Algorithm 1 FREEREX

Input: k.
Initialize: 1

η20
← 0, a0 ← 0, w1 ← 0, G0 ← 0, ψ(w) = (‖w‖+ 1) log(‖w‖+ 1)− ‖w‖.

for t = 1 to T do
Play wt, receive subgradient gt ∈ ∂`t(wt).
Gt ← max(Gt−1, ‖gt‖).
1
η2t
← max

(
1

η2t−1
+ 2‖gt‖2, Gt‖g1:t‖

)
.

at ← max(at−1, 1/(Gtηt)
2).

//Set wt+1 using FTRL update
wt+1 ← − g1:t

at‖g1:t‖

[
exp

(
ηt‖g1:t‖

k

)
− 1
]

// = argminw
[
kψ(atw)
atηt

+ g1:tw
]

end for

Theorem 4.12. The regret of FREEREX (Algorithm 1) is bounded by

RT (ẘ) ≤ k‖ẘ‖
√

2‖g‖21:T +Gmax max
t≤T
‖g1:t‖ log

(
2‖g‖1:T

Gmax
‖ẘ‖+ 1

)
+

45Gmax

k
exp(10/k2 + 1)

+ 2Gmax max
t

G2
t−1

‖g‖21:t−1

[
exp

(
5Gt

k2Gt−1
+ 1

)
− 1

]
Proof. Define φ(x) = (x+1) log(x+1)−x. Then ψ(w) = (‖w‖+1) log(‖w‖+1)−‖w‖ is a (φ′′(‖·‖), ‖·‖)-

adaptive regularizer by Proposition 4.10. Therefore we can immediately apply Theorem 4.7 to obtain

RT (ẘ) ≤ k

QT ηT
ψ(QTu) +

45Gmax

φ′′min
+ 2GmaxD

where we’ve defined φ′′min = inf‖w‖≤h−1(10/k2) kφ
′′(‖w‖).

We can compute (for non-negative x):

φ(x) ≤ (x+ 1) log(x+ 1)

φ′′(x) =
1

x+ 1

h(w) = φ(‖w‖)φ′′(‖w‖) =

(
log(‖w‖+ 1)− ‖w‖

‖w‖+ 1

)
≥ log(‖w‖+ 1)− 1

From Proposition 4.20 (part 2) we have 1
ηT
≤
√

2‖g‖21:T +Gmax maxt≤T ‖g1:t‖. We also have (‖w‖+
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1) log(‖w|+ 1)−‖w‖ = ‖w‖ log(‖w‖+ 1) + log(‖w‖+ 1)−‖w‖ ≤ ‖w‖ log(‖w‖+ 1), so we are left with

RT (ẘ) ≤ k

ηT
‖ẘ‖ log(QT ‖ẘ‖+ 1) + sup

‖w‖≤h−1( 10
k2

)

45(‖w‖+ 1)

k
+ 2GmaxD

= k
√

2‖g‖21:T +Gmax max
t≤T
‖g1:t‖‖ẘ‖ log(aT ‖ẘ‖) + 1) +

45Gmax

k

[
h−1

(
10

k2

)
+ 1

]
+ 2GmaxD

Now it remains to bound h−1(10/k2) and D. From our expression for h, we have

h−1(x/k2) ≤ exp
[ x
k2

+ 1
]
− 1

Therefore we have

h−1(10/k2) ≤ exp(10/k2 + 1)− 1

D = 2 max
t

G2
t−1

(‖g‖2?)1:t−1
h−1

(
5Gt

k2Gt−1

)
≤ 2 max

t

G2
t−1

(‖g‖2?)1:t−1

[
exp

(
5Gt

k2Gt−1
+ 1

)
− 1

]

Substituting the value QT = 2‖g‖1:TGmax
, we conclude

RT (ẘ) ≤ k
√

2‖g‖21:T +Gmax max
t≤T
‖g1:t‖‖ẘ‖ log

(
2‖g‖1:T

Gmax
‖ẘ‖+ 1

)
+

45Gmax

k
exp(10/k2 + 1) + 2GmaxD

From which the result follows by substituting in our expression for D.

As a specific example, for k =
√

5 we numerically evaluate the bound to get

RT (ẘ) ≤ ‖ẘ‖
√

10‖g‖21:T + 5Gmax max
t≤T
‖g1:t‖ log

(
2‖g‖1:T

Gmax
‖ẘ‖+ 1

)
+ 405Gmax

+ 2Gmax max
t

G2
t−1

‖g‖21:t−1

[
exp

(
Gt
Gt−1

+ 1

)
− 1

]

4.5 Conclusions

In this chapter, we presented a frontier of lower bounds on the worst-case regret of any parameter-free on-

line convex optimization algorithm. This frontier demonstrates a fundamental trade-off at work between
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k‖ẘ‖Gmax logγ(T‖ẘ‖+ 1) and exp

[(
maxt

Gt
γk2Gt−1

) 1
2γ−1

]
terms. We also present some easy-to-use the-

orems that allow us to construct algorithms that match our lower bound for any chosen k and γ. Note that our

algorithms require the essentially unavoidable trade-off parameters k and γ. However, k and γ are a funda-

mentally different kind of parameter than the values of Gmax or ‖ẘ‖ required by other algorithms. Since our

analysis does not make assumptions about the loss functions or comparison point ẘ, the parameters k and γ

can be freely chosen by the user. There are no unknown constraints on these parameters, and they effect only

constants in the regret analysis.

Our results also open a new perspective on optimization algorithms by casting using different parameter

values (other than just ‖ẘ‖ or Gmax) as a tool to avoid the exponential penalty. Previous algorithms that

require bounds on the diameter of W or Gmax can be viewed as addressing this issue. We show that it also

possible to avoid the exponential penalty by using a known bound on maxtGt/Gt−1, leading to a regret of

Õ(‖ẘ‖Gmax

√
T maxtGt/Gt−1).

4.5.1 Other Kinds of Adaptivity

The lower-bound in this chapter throws some cold water on the goal of adapting to ‖ẘ‖ and Gmax simulta-

neously, but there are many other forms of adaptivity we can address. In particular, all prior algorithms that

adapt to ‖ẘ‖ (including FREEREX), obtain a term like
√
Gmax

∑T
t=1 ‖gt‖, while algorithms that adapt to

Gmax can obtain
√∑T

t=1 ‖gt‖2, which is smaller.

In the next chapters, we will focus on obtaining adaptivity to various additional properties, usually as-

suming a known bound on Gmax. We find this assumption more appealing than a bound on ‖ẘ‖ because in

practice the value Gmax is often at least partially under the user’s control through the choice of loss function.

For example, many popular kernels used in SVM classification (including the Gaussian kernel) are bounded,

leading to known values for Gmax. Further, in practice one can always employ the heuristic of setting Gmax

to be 2Gt, which has no clear analogue that can be used to set ‖ẘ‖. Using this heuristic we should expect

to only update our guess for Gmax a small number of times and so we might at least achieve an asymptotic

regret of ‖ẘ‖Gmax

√
T .



Appendix

4.A Lower Bound Proof

Before getting started, we need one technical observation:

Proposition 4.13. Let k > 0, γ ∈ (1/2, 1]. Set

Zt =
t1−1/2γ

2t

[
exp

(
t1/2γ

(4k)1/γ

)
− 1

]
and set rt = Zt − Zt−1. Then for all sufficiently large T ,

rT ≥
ZT−1

3γ(4k)1/γ(T − 1)1−1/2γ

Proof. We have

d

dt

∣∣∣∣
t=T

Zt =
1

4γ(4k)1/γT
exp

(
T 1/2γ

(4k)1/γ

)
+

1

4γ
T−1−1/2γ − 1

4γ
T−1−1/2γ exp

(
T 1/2γ

(4k)1/γ

)
For sufficiently large T , this quantity is positive and increasing in T . Therefore for sufficiently large T ,

rT ≥
d

dt

∣∣∣∣
t=T−1

Zt

=
1

4γ(4k)1/γ(T − 1)
exp

(
(T − 1)1/2γ

(4k)1/γ

)
+

1

4γ
(T − 1)−1−1/2γ − 1

4γ
(T − 1)−1−1/2γ exp

(
(T − 1)1/2γ

(4k)1/γ

)
≥ 1

5γ(4k)1/γ(T − 1)
exp

(
(T − 1)1/2γ

(4k)1/γ

)
=

2

5γ(4k)1/γ(T − 1)1−1/2γ

(
ZT−1 +

(T − 1)1−1/2γ

2(T − 1)

)
≥ 1

3γ(4k)1/γ(T − 1)1−1/2γ
ZT−1

where the third inequality holds only for sufficiently large T .

40
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Now we prove Theorem 4.3, restated below. Theorem 4.2 is an immediate consequence of Theorem 4.3,

so we do not prove it seperately.

Theorem 4.3. For any γ ∈ (1/2, 1], k > 0, T0 > 0, and any online learning algorithm picking wt ∈ R, there

exists a T > T0, a u ∈ R, and a sequence g1, . . . , gT ∈ R with ‖gt‖ ≤ max(1, 18γ(4k)1/γ(t − 1)1−1/2γ)

on which the regret is:4

RT (ẘ) =

T∑
t=1

gtwt − gtẘ

≥ k‖ẘ‖G logγ(T‖ẘ‖+ 1)
√
T +

Gmax

T − 1
exp

(
(T − 1)1/2γ

2(4k)1/γ

)
≥ k‖ẘ‖Gmax logγ(T‖ẘ‖+ 1)

√
T + max

t≤T
Gmax

G2
t−1

‖g‖21:t−1

exp

[
1

2

(
Gt/Gt−1

288γk2

)1/(2γ−1)
]

where Gt = maxt′≤t ‖gt′‖ and Gmax = GT = maxt≤T ‖gt‖.

Proof. We prove the Theorem for randomized algorithms and expected regret, as this does not overly compli-

cate the argument. Our proof technique is very similar to that of the warm-up Theorem 4.1 in Section 4.1.1,

but we use more careful analysis to improve the bound. Again, the adversarial sequence foils the learner by

repeatedly presenting it with the subgradient gt = −1 until the learner’s expected prediction E[wt] crosses

some threshold. If E[wt] does not increase fast enough to pass the threshold, then we show that there is

some large ẘ � 1 for which RT (ẘ) exceeds our bound. However, if E[wt] crosses this threshold, then the

adversary presents a large positive gradient which forces the learner to have a large RT (0).

Define ŵt = E[wt|gt′ = −1 for all t′ < t]. Without loss of generality, assume ŵ1 = 0. Note that ŵt can

be computed by an adversary without access to the algorithm’s internal randomness.

Let Sn =
∑n
t=1 ŵt. Let Zt = t1−1/2γ

2t

[
exp

(
t1/2γ

(4k)1/γ

)
− 1
]
, and set rt = Zt −Zt−1 Suppose T1 > T0 is

such that

1. For all t1 > t2 > T1, Zt1 > Zt2 .

2. For all t > T1, rt ≥ Zt−1

3γ(4k)1/γ(t−1)1−1/2γ (by Proposition 4.13).

3. For all t > T1,

1

4

[
exp

(
t1/2γ

(4k)1/γ

)
− 1

]
≥ 1

t− 1
exp

(
(t− 1)1/2γ

2(4k)1/γ

)

4. for all t > T1,

1

36γ(4k)1/γ(t− 1)

[
exp

(
(t− 1)1/2γ

(4k)1/γ

)
− 1

]
≥ 1

(t− 1)
exp

(
(t− 1)1/2γ

2(4k)1/γ

)
4The same result holds with in expectation for randomized algorithms with a deterministic sequence gt.
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5. For all t > T1,

1

t− 1
exp

(
(t− 1)1/2γ

2(4k)1/γ

)
≥ exp

[
1

4

(
1

288γk2

)1/(2γ−1)
]

6. For all t > T1,

18γ(4k)1/γ(T − 1)1−1/2γ ≥ 1

We consider the quantity lim infn→∞
Sn
Zn

. There are two cases, either the lim inf is less than 1, or it is

not.

Case 1: lim infn→∞
Sn
Zn

< 1

In this case, there must be some T > T1 such that ST < ZT . We use the adversarial strategy of simply

giving gt = −1 for all t ≤ T . Because of this, E[wt|g1, . . . , gt−1] = ŵt so that

E[RT (ẘ)] =

T∑
t=1

gtE[wt|g1, . . . , gt−1]− gtẘ

=

T∑
t=1

gtŵt − gtẘ

= Tẘ − ST

≥ Tẘ − T 1− 1
2γ

2T

[
exp

(
T 1/2γ

(4k)1/γ

)
− 1

]
≥ Tẘ − 1

2

[
exp

(
T 1/2γ

(4k)1/γ

)
− 1

]

Set ẘ = 1
T

[
exp

(
T 1/2γ

(4k)1/γ

)
− 1
]
. Then clearly

E[RT (ẘ)] ≥ Tẘ − 1

2

[
exp

(
T 1/2γ

(4k)1/γ

)
− 1

]
≥ 1

2
Tẘ

=
1

4
Tẘ +

1

4

[
exp

(
T 1/2γ

(4k)1/γ

)
− 1

]
Now observe that we have chosen ẘ carefully so that

√
T = 4k logγ(Tẘ + 1)
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Therefore we can write

E[RT (ẘ)] ≥ 1

4
Tẘ +

1

4

[
exp

(
T 1/2γ

(4k)1/γ

)
− 1

]
= k‖ẘ‖ logγ(T‖ẘ‖+ 1)

√
T +

1

4

[
exp

(
T 1/2γ

(4k)1/γ

)
− 1

]
= k‖ẘ‖Gmax logγ(T‖ẘ‖+ 1)

√
T +

Gmax

4

[
exp

(
T 1/2γ

(4k)1/γ

)
− 1

]
where we have used Gmax = 1 to insert factors of Gmax where appropriate.

Observing that Gt/Gt−1 = 1 for all t, we can also easily conclude (using properties 3 and 5 of T1):

E[RT (ẘ)] ≥ k‖ẘ‖Gmax logγ(T‖ẘ‖+ 1)
√
T +

Gmax

T − 1
exp

(
(T − 1)1/2γ

2(4k)1/γ

)
≥ k‖ẘ‖Gmax logγ(T‖ẘ‖+ 1)

√
T + max

t≤T
Gmax

G2
t−1∑t−1

t′=1 ‖gt′‖2
exp

[
1

2

(
Gt/Gt−1

288γk2

)1/(2γ−1)
]

Case 2: lim infn→∞
Sn
Zn
≥ 1

By definition of lim inf , there exists some T2 > T1 and Q ≥ 1 such that ST2
≤ 3

2QZT2
and for all

t > T2, St > 3Q
4 Zt.

Suppose for contradiction that ŵt ≤ Q
2 rt for all t > T2. Then for all T > T2,

ST = ST2
+

T∑
t=T2+1

ŵt

≤ 3

2
QZT2

+
Q

2
ZT −

Q

2
ZT2

=
Q

2
ZT +QZT2

Since the second term does not depend on T , this implies that for sufficiently large T , STZT ≤
3
4QZT , which

contradicts our choice of T2. Therefore ŵt > Q
2 rt for some t > T2.

Let T be the the smallest index T > T2 such that ŵT > Q
2 rT . Since ŵt ≤ Q

2 rt for t < T , we have

ST−1 ≤
Q

2
ZT−1 +QZT2

≤ 2QZT−1

where we have used property 1 of T1 to conclude ZT2
≤ ZT−1.

Our adversarial strategy is to give gt = −1 for t < T , then gT = 18γ(4k)1/γ(T −1)1−1/2γ . We evaluate
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the regret at ẘ = 0 and iteration T . Since gt = −1 for t < T , E[wt|g1, . . . , gt−1] = ŵt for t ≤ T and so

E[RT (ẘ)] = −ST−1 + gTwT

≥ gT
Q

2
rT − 2QZT−1

≥ Q

2

18γ(4k)1/γ(T − 1)1−1/2γ

3γ(4k)1/γ(T − 1)1−1/2γ
ZT−1 − 2QZT−1

= QZT−1

≥ ZT−1

where we have used Q ≥ 1 in the last line. Now we use the fact that Gmax = 18γ(4k)1/γ(T − 1)1−1/2γ (by

property 6 of T1) to write

E[RT (ẘ)] ≥ ZT−1

=
1

18γ(4k)1/γ)

Gmax

T − 1

[
exp

(
(T − 1)1/2γ

(4k)1/γ

)
− 1

]
≥ Gmax

T − 1
exp

(
(T − 1)1/2γ

2(4k)1/γ

)
where we have used the fourth assumption on T1 in the last line.

Since we are considering ẘ = 0, we can always insert arbitrary multiples of ẘ:

E[RT (ẘ)] ≥ Gmax

T − 1
exp

(
(T − 1)1/2γ

2(4k)1/γ

)
= k‖ẘ‖Gmax logγ(T‖ẘ‖+ 1)

√
T +

Gmax

T − 1
exp

(
(T − 1)1/2γ

2(4k)1/γ

)
Now we relate the quantity in the exponent to Gt/Gt−1. We have GT = gT and GT−1 = 1 so that

GT /GT−1 = 18γ(4k)1/γ(T − 1)1−1/2γ
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Therefore

(T − 1)1/2γ =

(
GT /GT−1

18γ(4k)1/γ

) 1
2γ(1−1/2γ)

=

(
GT /GT−1

18γ(4k)1/γ

)1/(2γ−1)

(T − 1)1/2γ

(4k)1/γ
=

(
GT /GT−1

18γ(4k)2

)1/(2γ−1)

=

(
GT /GT−1

288γk2

)1/(2γ−1)

Now observe that 1
T−1 =

G2
T−1∑T−1

t=1 ‖gt‖2
so that we have

Gmax

T − 1
exp

(
(T − 1)1/2γ

2(4k)1/γ

)
= Gmax

G2
T−1∑T−1

t=1 ‖gt‖2
exp

[
1

2

(
GT /GT−1

288γk2

)1/(2γ−1)
]

Further, since 1
t−1 =

G2
t−1∑t−1

t′=1
‖gt′‖2

for all t ≤ T , condition 5 on T1 tells us that

Gmax

T − 1
exp

(
(T − 1)1/2γ

2(4k)1/γ

)
≥ Gmax exp

[
1

2

(
1

288γk2

)1/(2γ−1)
]

= max
t≤T−1

Gmax
G2
t−1∑t−1

t′=1 ‖gt′‖2
exp

[
1

2

(
Gt/Gt−1

288γk2

)1/(2γ−1)
]

so that

Gmax

T − 1
exp

(
(T − 1)1/2γ

2(4k)1/γ

)
= max

t≤T
Gmax

G2
t−1∑t−1

t′=1 ‖gt′‖2
exp

[
1

2

(
Gt/Gt−1

288γk2

)1/(2γ−1)
]

Therefore we can put everything together to get

E[RT (ẘ)] ≥ k‖ẘ‖Gmax logγ(T‖ẘ‖+ 1)
√
T +

Gmax

T − 1
exp

(
(T − 1)1/2γ

2(4k)1/γ

)
≥ k‖ẘ‖Gmax logγ(T‖ẘ‖+ 1)

√
T + max

t≤T
Gmax

G2
t−1∑t−1

t′=1 ‖gt′‖2
exp

[
1

2

(
Gt/Gt−1

288γk2

)1/(2γ−1)
]
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4.B FTRL regret

We prove a general bound on the regret of FTRL. Our bound is not fundamentally tighter than the many

previous analyses of FTRL, but we decompose the regret in a new way that makes our analysis much easier.

We make use of “shadow regularizers”, ψ+
t that can be used to characterize regret more easily. Our bound

bears some similarity in form to the adaptive online mirror descent bound of [45] and the analysis of FTRL

with varying regularizers of [13].

Theorem 4.14. Let `t, . . . , `T be an arbitrary sequence of loss functions. Define `0(w) = 0 for notational

convenience. Let ψ0, ψ1, . . . , ψT−1 be a sequence of regularizer functions, such that ψt is chosen without

knowledge of `t+1, . . . , `T . Let ψ+
1 , . . . , ψ

+
T be an arbitrary sequences of regularizer functions (possibly cho-

sen with knowledge of the full loss sequence). Define w1, . . . , wT to be the outputs of FTRL with regularizers

ψt: wt+1 = argminψt + `1:t, and define w+
t for t = 2, . . . , T + 1 by w+

t+1 = argminψ+
t + `1:t Then FTRL

with regularizers ψt obtains regret

RT (ẘ) =

T∑
t=1

`t(wt)− `t(ẘ)

≤ ψ+
T (ẘ)− ψ0(w+

2 ) +

T∑
t=1

ψt−1(w+
t+1)− ψ+

t (w+
t+1) + `t(wt)− `t(w+

t+1)

+

T−1∑
t=1

ψ+
t (w+

t+2)− ψt(w+
t+2)

Proof. We define Xt = w+
t+2 for t < T and XT = u. We’ll use the symbols Xt as intermediate variables in

our proof in an attempt to keep the algebra cleaner. By definition of w+
t+1, for all t ≤ T we have

ψ+
t (w+

t+1) + `1:t(w
+
t+1) ≤ ψ+

t (Xt) + `1:t(Xt)

`t(wt) ≤ `t(wt) + `1:t(Xt)− `1:t(w
+
t+1) + ψ+

t (Xt)− ψ+
t (w+

t+1)

= `t(wt)− `t(w+
t+1) + `1:t(Xt)− `1:t−1(w+

t+1)

+ ψt−1(w+
t+1)− ψ+

t (w+
t+1)

+ ψ+
t (Xt)− ψt−1(w+

t+1)
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Summing this inequality across all t we have

T∑
t=1

`t(wt) ≤
T∑
t=1

`t(wt)− `t(w+
t+1)

+

T∑
t=1

`1:t(Xt)−
T∑
t=1

`1:t−1(w+
t+1)

+

T∑
t=1

ψt−1(w+
t+1)− ψ+

t (w+
t+1)

+

T∑
t=1

ψ+
t (Xt)− ψt−1(w+

t+1)

Notice that
∑T
t=1 `1:t−1(w+

t+1) =
∑T
t=2 `1:t−1(w+

t+1) since the first term is zero. Thus after some re-

indexing we have

T∑
t=1

`t(wt) ≤
T∑
t=1

`t(wt)− `t(w+
t+1)

+ `1:T (XT ) +

T∑
t=2

`1:t−1(Xt−1)−
T∑
t=2

`1:t−1(w+
t+1)

+

T∑
t=1

ψt−1(w+
t+1)− ψ+

t (w+
t+1)

+ ψ+
T (XT )− ψ0(w+

2 ) +

T−1∑
t=1

ψ+
t (Xt)−

T−1∑
t=1

ψt(w
+
t+2)

Now we substitute our values of Xt = w+
t+2 for t < T and XT = ẘ to obtain

T∑
t=1

`t(wt) ≤
T∑
t=1

`t(wt)− `t(w+
t+1)

+ `1:T (ẘ) + ψ+
T (ẘ)− ψ0(w+

2 )

+

T∑
t=1

ψt−1(w+
t+1)− ψ+

t (w+
t+1)

+

T−1∑
t=1

ψ+
t (w+

t+2)−
T−1∑
t=1

ψt(w
+
t+2)
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so that subtracting `1:T (ẘ) from both sides we get a regret bound:

RT (ẘ) =

T∑
t=1

`t(wt)− `t(ẘ)

≤
T∑
t=1

`t(wt)− `t(w+
t+1)

+ ψ+
T (ẘ)− ψ0(w+

2 )

+

T∑
t=1

ψt−1(w+
t+1)− ψ+

t (w+
t+1)

+

T−1∑
t=1

ψ+
t (w+

t+2)−
T−1∑
t=1

ψt(w
+
t+2)

4.C Facts About Strong Convexity

In this section we prove some basic facts about our generalized strong convexity.

Proposition 4.15. Suppose ψ : W → R is σ-strongly convex. Then:

1. ψ + f is σ-strongly convex for any convex function f .

2. cψ is cσ-strongly convex for any c ≥ 0.

3. Suppose c ≥ 0 and φ(w) = ψ(cw). Let σ′(x, y) = σ(cx, cy). Then φ is c2σ′-strongly convex.

Proof. 1. Let x, y ∈W and let g ∈ ∂ψ(x) and b ∈ ∂f(x). Then g+ b ∈ ∂(ψ+ f)(x). By convexity and

strongly convexity respectively we have:

ψ(y) ≥ ψ(x) + g · (y − x) +
σ(x, y)

2
‖x− y‖2

f(y) ≥ f(x) + b · (y − x)

so that adding these equations shows that ψ + f is σ-strongly convex.

2. This follows immediately by multiplying the defining equation for strong convexity of ψ by c.

3. Let x, y ∈W and let g ∈ ∂ψ(cx). Then cg ∈ ∂φ(x).

ψ(cy) ≥ ψ(cx) + g · (cy − cx) +
σ(cx, cy)

2
‖cx− cy‖2

φ(y) ≥ φ(x) + cg · (y − x) +
σ(cx, cy)

2
c2‖x− y‖2
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Note that for any linear function f(w) = g · w, if ψ is σ-strongly convex, then ψ + f is also σ-strongly

convex.

We show that the following lemma from [33] about strongly-convex functions continues to hold under

our more general definition. The proof of this lemma (and the next) are identical to the standard ones, but we

include them here for completeness.

Lemma 4.16. Suppose A and B are arbitrary convex functions such that A + B is σ-strongly convex. Let

w1 = argminA and w2 = argminA+B and let g ∈ ∂B(w1). Then

‖w1 − w2‖ ≤
‖g‖?

σ(w1, w2)

Proof. Since w2 ∈ argminA + B, we have 0 ∈ ∂(A + B)(w2) and so by definition of strong convexity we

have

σ(w1, w2)

2
‖w1 − w2‖2 ≤ A(w1) +B(w1)−A(w2)−B(w2)

Now let g ∈ ∂B(w1). Consider the function Â(w) = A(w) + B(w) − 〈g, w〉. Then we must have

0 ∈ ∂Â(w1) and so by strong-convexity again we have

σ(w1, w2)

2
‖w1 − w2‖2 ≤ A(w2) +B(w2)− 〈g, w2〉 −A(w1)−B(w1) + 〈g, w1〉

Adding these two equations yields:

σ(w1, w2)‖w1 − w2‖2 ≤ 〈g, w1 − w2〉 ≤ ‖g‖?‖w1 − w2‖

and so we obtain the desired statement.

Finally, we have an analog of a standard way to check for strong-convexity:

Proposition 4.17. Suppose ψ : W → R is twice-differentiable and vT∇2ψ(x)v ≥ σ(x)‖v‖2 for all x and

v for some norm ‖ · ‖ and σ : W → R where σ(x + t(y − x)) ≥ min(σ(x), σ(y)) for all x, y ∈ W and

t ∈ [0, 1]. Then ψ is σ-strongly convex with respect to the norm ‖ · ‖.
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Proof. We integrate the derivative:

ψ(x)− ψ(y) =

∫ 1

0

d

dt
ψ(x+ t(y − x))dt

=

∫ 1

0

∇ψ(x+ t(y − x)) · (y − x)dt

= ∇ψ(x) · (y − x)

+

∫ 1

0

∫ t

0

(y − x)T∇2ψ(x+ k(y − x))(y − x)dkdt

≥ ∇ψ(x) · (y − x) + ‖y − x‖2
∫ 1

0

∫ t

0

σ(x+ k(y − x))dkdt

≥ ∇ψ(x) · (y − x) + ‖y − x‖2
∫ 1

0

tmin(σ(x), σ(y))dt

= ∇ψ(x) · (y − x) +
min(σ(x), σ(y))

2
‖y − x‖2

4.D Proof of Theorem 4.9

First we prove a proposition that allows us to generate a strongly convex function easily:

Proposition 4.18. Suppose φ : R→ R is such that φ
′(x)
x ≥ φ′′(x) ≥ 0 and φ′′′(x) ≤ 0 for all x ≥ 0. Let W

be a Hilbert Space and ψ : W → R be given by ψ(w) = φ(‖w‖). Then ψ is φ′′(‖w‖)-strongly convex with

respect to ‖ · ‖.

Proof. Let x, y ∈W . We have

∇ψ(x) = φ′(‖x‖) x

‖x‖

∇2ψ(x) =

(
φ′′(‖x‖)− φ′(‖x‖)

‖x‖

)
xxT

‖x‖2
+
φ′(‖x‖)
‖x‖

I

� φ′′(‖x‖)I

Where the last line follows since φ′(x)
x ≥ φ′′(x) for all x ≥ 0. Since φ′′′(x) ≤ 0, φ′′(x) is always decreasing

for positive x and so we have

φ′′(‖x+ t(y − x)‖) ≥ min(φ′′(‖x‖), φ′′(‖y‖))

for all t ∈ [0, 1]. Therefore we can apply Proposition 4.17 to conclude thatψ is φ′′(‖w‖)-strongly convex.

Now we prove Proposition 4.9, restated below:
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Proposition 4.9. Let ‖ · ‖ be the G2 norm (‖w‖ = ‖w‖2 =
√
w · w). Let φ be a three-times differentiable

function from the non-negative reals to the reals that satisfies

1. φ(0) = 0.

2. φ′(x) ≥ 0.

3. φ′′(x) ≥ 0.

4. φ′′′(x) ≤ 0.

5. limx→∞ φ(x)φ′′(x) =∞.

Then ψ(w) = φ(‖w‖) is a (φ′′(‖ · ‖), ‖ · ‖)-adaptive regularizer.

Proof. It’s clear that ψ(0) = 0 so the first condition for being an adaptive regularizer is satisfied.

Next we will show that φ
′(x)
x ≥ φ′′(x) so that we can apply Proposition 4.18. It suffices to show

φ′(x)− xφ′′(x) ≥ 0

Clearly this identity holds for x = 0. Differentiating the right-hand-side of the equation, we have

φ′′(x)− xφ′′′(x)− φ′′(x) = −xφ′′′(x) ≥ 0

since φ′′′(x) ≤ 0 and x ≥ 0. Thus φ′(x)− xφ′′(x) is non-decreasing and so must always be non-negative.

Therefore, by Proposition 4.18, ψ is (φ′′(‖·‖), ‖·‖)-strongly convex. Also, since φ′′′(x) ≤ 0, φ′′(‖x‖) ≤
φ′′(‖y‖) when ‖x‖ ≥ ‖y‖ so that ψ satisfies the second condition for being an adaptive regularizer.

Finally, observe that limx→∞ φ(x)φ′′(x) implies by definition that for any C there exists a B such that

φ(x)φ′′(x) ≥ C whenever x ≥ B. Therefore we immediately see that ψ(x)φ′′(‖x‖) ≥ C for all ‖x‖ ≥ B

so that the third condition is satified.

4.E Proof of Theorem 4.7

First we define new regularizers ψ+
t analagously to ψt that we will use in conjunction with Theorem 4.14:

Definition 4.19. Given a norm ‖ · ‖ and a sequence of subgradients g1, . . . , gT , define Gt and 1
ηt

as in

Definition 4.6, and define G0 = G1. We define 1
η+t

recursively by:

1

η+
0

=
1

η0

1

(η+
t )2

= max

(
1

η2
t−1

+ 2‖gt‖? min(‖gt‖?, Gt−1), Gt−1‖g1:t‖?
)
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Further, given a k ≥ 1 and a non-decreasing sequence of positive numbers at, define ψ+
t by:

ψ+
t (w) =

k

η+
t at−1

ψ(at−1w)

w+
t+1 = argmin

w∈W
ψ+
t (w) + g1:t · w

Throughout the following arguments we will assume ηt and η+
t are the sequences defined in Definitions

4.6 and 4.19.

The next proposition establishes several identities that we will need in proving our bounds.

Proposition 4.20. Suppose ψ is a (σ, ‖ · ‖)-adaptive regularizer, and g1, · · · , gT be some sequence of sub-

gradients. Then the following identities hold:

1.

2‖gt‖?Gt−1η
+
t ≥

(
1

η+
t

− 1

ηt−1

)
≥ ‖gt‖? min(‖gt‖?, Gt−1)η+

t

2.

1

ηt
≤
√

2Gt(‖g‖?)1:t

1

ηt
≤
√

2(‖g‖2?)1:t +Gmax max
t′≤t
‖g1:t′‖?

3.

‖wt − w+
t+1‖ ≤

‖gt‖?η+
t +

(
1
η+t
− 1

ηt−1

)
1

Gt−1

at−1kσ(at−1wt, at−1w
+
t+1)

4. Let ψ̂ be such that ψ̂(at−1w) = ψ(at−1w) for w ∈ W and ψ̂(at−1w) = ∞ for w /∈ W . There exists

some subgradient of ψ̂ at at−1wt, which with mild abuse of notation we call∇ψ(at−1wt), such that:

|∇ψ̂(at−1wt) · (wt − w+
t+1)| ≤ 3

‖gt‖?
Gt−1

at−1k2σ(at−1wt, at−1w
+
t+1)

5.

gt · (wt − w+
t+1) ≤

‖gt‖2?η+
t +

(
1

ηt−1
− 1

η+t

)
‖gt‖?
Gt−1

at−1kσ(at−1wt, at−1w
+
t+1)



CHAPTER 4. AN OPTIMAL PARAMETER-FREE ALGORITHM 53

6.

1

η+
t

≤
√

2Gmax(‖g‖?)1:T−1 + 2GmaxGt−1

Proof. Let ψ̂ be such that ψ̂(at−1w) = ψ(at−1w) for w ∈ W and ψ̂(at−1w) = ∞ for w /∈ W . Then we

can write wt = argminw∈W
k

at−1ηt−1
ψ(at−1w) + g1:t−1 · w = argmin k

at−1ηt−1
ψ̂(at−1w) + g1:t−1. From

this it follws that there is some subgradient of ψ̂ at at−1wt, which we refer to (by mild abuse of notation) as

∇ψ̂(at−1wt) such that

∇ψ̂(at−1wt) = −ηt−1g1:t−1

k

Note that we must appeal to a subgradient rather than the actual gradient in order to encompass the case that

at−1wt is on the boundary of W .

Next, observe that

η+
t ηt−1‖g1:t−1‖? ≤ (ηt−1)2‖g1:t−1‖? ≤

1

Gt−1

Now we are ready to prove the various parts of the Proposition.

1. By definition of ηt−1 and η+
t we have

1

(η+
t )2
− 1

(ηt−1)2
≥ 2‖gt‖? min(‖gt‖?, Gt−1)(

1

η+
t

− 1

ηt−1

)(
1

η+
t

+
1

ηt−1

)
≥ 2‖gt‖? min(‖gt‖?, Gt−1)(

1

η+
t

− 1

ηt−1

)(
1 +

η+
t

ηt−1

)
≥ 2‖gt‖? min(‖gt‖?, Gt−1)η+

t

1

η+
t

− 1

ηt−1
≥ ‖gt‖? min(‖gt‖?, Gt−1)η+

t

where in the last line we used the fact that η+
t ≤ ηt−1 to conclude that 1 +

η+t
ηt−1

≤ 2.

For the other direction, we have two cases:

1. 1
(η+t )2

= 1
(ηt−1)2 + 2‖gt‖? min(‖gt‖?, Gt−1).

2. 1
(η+t )2

= Gt−1‖g1:t‖?.

Case 1 1
(η+t )2

= 1
(ηt−1)2 + 2‖gt‖? min(‖gt‖?, Gt−1):

In this case we have
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1

(η+
t )2
− 1

(ηt−1)2
= 2‖gt‖? min(‖gt‖?, Gt−1)(

1

η+
t

− 1

ηt−1

)(
1

η+
t

+
1

ηt−1

)
= 2‖gt‖? min(‖gt‖?, Gt−1)(

1

η+
t

− 1

ηt−1

)(
1 +

η+
t

ηt−1

)
= 2‖gt‖? min(‖gt‖?, Gt−1)η+

t

1

η+
t

− 1

ηt−1
≤ 2‖gt‖? min(‖gt‖?, Gt−1)η+

t

where in the last line we used the fact that 1 +
η+t
ηt−1

≥ 1.

Case 2 1
(η+t )2

= Gt−1‖g1:t‖?:

1

(η+
t )2
− 1

(ηt−1)2
≤ Gt−1‖g1:t‖? −Gt−1‖g1:t−1‖?

≤ Gt−1‖gt‖? ≤ Gt−1‖gt‖?

Now we follow the exact same argument as in Case 1 to show 1
η+t
− 1

ηt−1
≤ Gt−1‖gt‖?η+

t , which

proves the desired result.

2. We proceed by induction for both claims. The statements are clear for 1
η1

=
√

2‖g1‖?. Suppose

1

ηt
≤
√

2Gt(‖g‖?)1:t

1

ηt
≤
√

2(‖g‖2?)1:t +Gmax max
t′≤t
‖g1:t′‖?

Then observe that 1
η2t

+2‖gt+1‖2? ≤ 2Gt+1(‖g‖?)1:t+1 by the induction hypothesis, andGt+1‖g1:t+1‖? ≤
2Gt+1(‖g‖?)1:t+1. Therefore 1

ηt+1
≤
√

2Gt+1(‖g‖?)1:t+1, proving the first claim.

The induction step for the second claim follows from the observations:

2(‖g‖2?)1:t+1 +Gmax max
t′≤t+1

‖g1:t′‖? ≥ 2(‖g‖2?)1:t +Gmax max
t′≤t
‖g1:t′‖? + 2‖gt+1‖2?

2(‖g‖2?)1:t+1 +Gmax max
t′≤t+1

‖g1:t′‖? ≥ Gt‖g1:t+1‖?

so that 1
ηt+1
≤
√

2(‖g‖2?)1:t+1 +Gmax maxt′≤t+1 ‖g1:t′‖? as desired.

3. Let Iat−1W (w) be the indicator of the set at−1W - Iat−1W (at−1w) = 0 if w ∈ W and∞ otherwise.

Observe that ψ̂(w) = ψ(w) + Iat−1W (w). Observe that ψ̂(w) = Iat−1W (w) + ψ(w).



CHAPTER 4. AN OPTIMAL PARAMETER-FREE ALGORITHM 55

Now the third equation follows from Lemma 4.16, setting A(w) = Iat−1W (w) + k
at−1ηt−1

ψ(w) +

g1:t−1

at−1
·w and B(w) = Iat−1W (w)+ gt

at−1
·w+

(
1

at−1η
+
t

− k
at−1ηt−1

)
ψ(w). Then by inspection of the

definitions of wt and w+
t+1, we have at−1wt = argminA and at−1w

+
t+1 = argminA+ B. Further, by

Corollary 4.15, A + B is kσ
at−1η

+
t

-strongly convex. We can re-write A and B in terms of ψ̂ by simply

replacing the ψs with ψ̂s and removing the Iat−1W s. Now we use the facts noted at the beginning of

the proof:

∇ψ̂(at−1wt) = −ηt−1g1:t−1

k

η+
t ηt−1‖g1:t−1‖ ≤

1

Gt−1

Applying these identities with Lemma 4.16 we have:

‖at−1wt − at−1w
+
t+1‖ ≤ at−1η

+
t

‖ gt
at−1

+
(

k
at−1η

+
t

− k
at−1ηt−1

)
∇ψ̂(at−1wt)‖?

kσ(at−1wt, at−1w
+
t+1)

≤ η+
t ‖gt‖?

σ(at−1wt, at−1w
+
t+1)

+
η+
t

(
k
η+t
− k

ηt−1

)
ηt−1‖g1:t−1‖?

k

kσ(at−1wt, at−1w
+
t+1)

≤ η+
t ‖gt‖?

kσ(at−1wt, at−1w
+
t+1)

+

(
1
η+t
− 1

ηt−1

)
1

Gt−1

kσ(at−1wt, at−1w
+
t+1)

And we divide by at−1 to conclude the desired identity.

4. Using the already-proved parts 1 and 3 of this Proposition and definition of dual norm, we have

|∇ψ̂(at−1wt) · (wt − w+
t+1)| ≤ ‖∇ψ(at−1wt)‖?‖wt − w+

t+1‖

≤ ηt−1‖g1:t−1‖?
k

η+
t ‖gt‖?

at−1kσ(at−1wt, at−1w
+
t+1)

+
ηt−1‖g1:t−1‖?

k

(
1
η+t
− 1

ηt−1

)
1

Gt−1

at−1kσ(at−1wt, at−1w
+
t+1)

≤
‖gt‖?
Gt−1

at−1k2σ(at−1wt, at−1w
+
t+1)

+
η+
t ηt−1‖g1:t−1‖?2Gt−1‖gt‖ 1

Gt−1

at−1k2σ(at−1wt, at−1w
+
t+1)

≤
‖gt‖?
Gt−1

at−1k2σ(at−1wt, at−1w
+
t+1)

+

1
G2
t−1

2Gt−1‖gt‖?
at−1k2σ(at−1wt, at−1w

+
t+1)

≤ 3

‖gt‖?
Gt−1

at−1k2σ(at−1wt, at−1w
+
t+1)
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5. The fifth part of the Proposition follows directly from part 3 by the definition of dual norm.

6. By part 2, we have

1

ηt−1
≤
√

2Gmax(‖g‖?)1:t−1

We consider the two cases:

Case 1 1
(η+t )2

= 1
(ηt−1)2 + 2‖gt‖? min(‖gt‖?, Gt−1): In this case we have

1

(η+
t )2
≤ 2Gmax(‖g‖?)1:t−1 + 2‖gt‖? min(‖gt‖?, Gt−1)

≤ 2Gmax(‖g‖?)1:t−1 + +2GmaxGt−1

Case 2 1
(η+t )2

= Gt−1‖g1:t‖?:

1

(η+
t )2
≤ Gt−1‖g1:t‖?

≤ Gt−1‖g1:t−1‖+Gt−1‖gt‖

≤ Gmax(‖g‖?)1:t−1 +GmaxGt−1

Lemma 4.21. Suppose ψ a (σ, ‖ · ‖)-adaptive regularizer and g1, · · · , gT is some sequence of subgradi-

ents. We use the terminology of Definition 4.6. Recall that we define h(w) = ψ(w)σ(w) and h−1(x) =

maxh(w)≤x ‖w‖. Suppose either of the follow holds:

1. ‖w+
t+1‖ ≥

h−1

(
2

Gt
k2Gt−1

)
at−1

and ‖w+
t+1‖ ≥ ‖wt‖.

2. ‖wt‖ ≥
h−1

(
5

Gt
k2Gt−1

)
at−1

and ‖wt‖ ≥ ‖w+
t+1‖.

Then

ψt−1(w+
t+1)− ψ+

t (w+
t+1) + gt(wt − w+

t+1) ≤ 0

Proof. As in Proposition 4.20, we use∇ψ(x) to simply mean some particular subgradient of ψ at x.

Case 1: ‖w+
t+1‖ ≥

h−1

(
2

Gt
k2Gt−1

)
at−1

and ‖w+
t+1‖ ≥ ‖wt‖:

By definition of adaptive regularizer (part 2), we must have σ(at−1w
+
t+1) ≤ σ(at−1wt) since ‖w+

t+1‖ ≥
‖wt‖. Therefore σ(at−1w

+
t+1, at−1wt) = σ(at−1w

+
t+1).
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By definition of h, when ‖w+
t+1‖ ≥

h−1

(
2

Gt
k2Gt−1

)
at−1

we can apply Proposition 4.20 (parts 1 and 5) to

obtain

ψ(at−1w
+
t+1)σ(at−1w

+
t+1) ≥ 2

Gt
k2Gt−1(

1

at−1η
+
t

− 1

at−1ηt−1

)
ψ(at−1w

+
t+1) ≥

(
1

at−1η
+
t

− 1
at−1ηt−1

)
2 Gt
Gt−1

k2σ(at−1wt, at−1w
+
t+1)(

k

at−1η
+
t

− k

at−1ηt−1

)
ψ(at−1w

+
t+1) ≥

(
1
η+t
− 1

ηt−1

)
at−1kσ(at−1wt, at−1w

+
t+1)

2
Gt
Gt−1

ψ+
t (w+

t+1)− ψt−1(w+
t+1) ≥

‖gt‖? min(‖gt‖?, Gt−1)η+
t

Gt
Gt−1

+
(

1
η+t
− 1

ηt−1

)
Gt
Gt−1

at−1kσ(at−1wt, at−1w
+
t+1)

≥
‖gt‖2?η+

t +
(

1
η+t
− 1

ηt−1

)
‖gt‖?
Gt−1

at−1kσ(at−1wt, at−1w
+
t+1)

≥ gt · (wt − w+
t+1)

We remark that in the calculations above, we showed(
1
η+t
− 1

ηt−1

)
2 Gt
Gt−1

at−1σ(at−1kwt, at−1w
+
t+1)

≥ gt(wt − w+
t+1)

which we will re-use in Case 2.

Case 2 ‖wt‖ ≥
h−1

(
5
‖gt‖?
k2Gt−1

)
at−1

, and ‖wt‖ ≥ ‖w+
t+1‖:

Again, by definition of adaptive regularizer (part 2), we must have σ(at−1w
+
t+1) ≥ σ(at−1wt) since

‖w+
t+1‖ ≤ ‖wt‖. Therefore σ(at−1w

+
t+1, at−1wt) = σ(at−1wt). Let ψ̂ be as in Proposition 4.20 part 4.

Oberve that w+
t+1 and wt are both in W , so that we have ψ(at−1w

+
t+1) = ψ̂(at−1w

+
t+1) and ψ(at−1wt) =
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ψ̂(at−1wt). Then we have:

ψ+
t (w+

t+1)− ψt−1(w+
t+1) =

(
k

at−1η
+
t

− k

at−1ηt−1

)
ψ(at−1w

+
t+1)

=

(
k

at−1η
+
t

− k

at−1ηt−1

)
ψ̂(at−1w

+
t+1)

≥
(

k

at−1η
+
t

− k

at−1ηt−1

)(
ψ̂(at−1wt)−

∣∣∣at−1∇ψ̂(at−1wt) · (w+
t+1 − wt)

∣∣∣)
≥
(
k

η+
t

− k

ηt−1

)ψ(at−1wt)

at−1
− 3

‖gt‖?
Gt−1

at−1k2σ(at−1wt, at−1w
+
t+1)


≥
(
k

η+
t

− k

ηt−1

)(
ψ(at−1wt)

at−1
− 3

Gt
Gt−1

at−1k2σ(at−1wt, at−1w
+
t+1)

)
]

Now by definition of h, when ‖wt‖ ≥
h−1(5

Gt
k2Gt−1

)

at−1
we have

ψ(at−1wt)σ(at−1wt) ≥ 5
Gt

k2Gt−1(
k

at−1η
+
t

− k

at−1ηt−1

)
ψ(at−1wt) ≥

(
k
η+t
− k

ηt−1

)
5 Gt
Gt−1

at−1k2σ(at−1wt, at−1w
+
t+1)(

k

η+
t

− k

ηt−1

)(
ψ(at−1wt)

at−1
− 3

Gt
Gt−1

at−1k2σ(at−1wt, at−1w
+
t+1)

)
≥

(
1
η+t
− 1

ηt−1

)
2 Gt
Gt−1

at−1kσ(at−1wt, at−1w
+
t+1)

ψ+
t (w+

t+1)− ψt−1(w+
t+1) ≥ gt · (wt − w+

t+1)

The next theorem is a general fact about adaptive regularizers that is useful for controlling ψ+
t − ψt:

Proposition 4.22. Suppose ψ : W → R is a (σ, ‖ · ‖)-adaptive regularizer. Then ψ(aw)
a is an increasing

function of a for all a > 0 for all w ∈W .

Proof. Let’s differentiate: d
da

ψ(aw)
a = ∇ψ(aw)·w

a − ψ(aw)
a2 . Thus it suffices to show

∇ψ(aw) · aw ≥ ψ(aw)

But this follows immediately from the definition of subgradient, since ψ(0) = 0.

Lemma 4.23. Suppose ψ is a (σ, ‖ · ‖)-adaptive regularizer and g1, . . . , gT is an arbitrary sequence of

subgradients (possibly chosen adaptively). Using the terminology of Definition 4.6,

ψ+
t (w+

t+2)− ψt(w+
t+1) ≤ 0
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for all t

Proof. This follows from the fact that at−1 ≤ at, and property 4 of an adaptive regularizer (ψ(ax)/a is a

non-decreasing function of a). By Proposition 4.20 (part 1), we have 1
η+t
≤ 1

ηt
. Therefore:

ψ+
t (w+

t+2) =
k

η+
t at−1

ψ(at−1w
+
t+2)

≤ k

ηtat−1
ψ(at−1w

+
t+2)

≤ k

ηtat
ψ(atw

+
t+2)

= ψt(w
+
t+2)

Lemma 4.24. Suppose ψ is a (σ, ‖ · ‖)-adaptive regularizer and g1, . . . , gT is an arbitrary sequence of

subgradients (possibly chosen adaptively). We use the regularizers of Definition 4.6. Recall that we define

h(w) = ψ(w)σ(w) and h−1(x) = argmaxh(w)≤x ‖w‖. Define

σmin = inf
‖w‖≤h−1(10/k2)

kσ(w)

and

D = 2 max
t

h−1
(

5 Gt
kGt−1

)
at−1

Then

ψt−1(w+
t+1)− ψ+

t (w+
t+1) + gt(wt − w+

t+1)

≤

{
‖gt‖? min(D,maxt(‖wt − w+

t+1‖)) when ‖gt‖ > 2Gt−1

3‖gt‖2?η
+
t

at−1σmin
otherwise

Proof. By Lemma 4.21, whenever either ‖w+
t+1‖ ≥

h−1

(
5

Gt
k2Gt−1

)
at−1

≥
h−1

(
2

Gt
k2Gt−1

)
at−1

or ‖wt‖ ≥
h−1

(
5

Gt
k2Gt−1

)
at−1

we must have

ψt−1(w+
t+1)− ψ+

t (w+
t+1) + gt(wt − w+

t+1) ≤ 0

Therefore, we have:

ψt−1(w+
t+1)− ψ+

t (w+
t+1) + gt(wt − w+

t+1) ≤

 gt · (wt − w+
t+1) when max(‖wt‖, ‖w+

t+1‖) ≤
h−1

(
5

Gt
k2Gt−1

)
at−1

0 otherwise
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When ‖gt‖? ≤ 2Gt−1, then we have h−1
(

5 Gt
k2Gt−1

)
≤ h−1(10/k2). Thus when max(‖wt‖, ‖w+

t+1‖) ≤

h−1

(
5

Gt
k2Gt−1

)
at−1

and ‖gt‖? ≤ 2Gt−1, by Proposition 4.20 (part 5), we have

gt(wt − w+
t+1) ≤

‖gt‖2?η+
t +

(
1
η+t
− 1

ηt−1

)
‖gt‖?
Gt−1

at−1σmin

Therefore when ‖gt‖? ≤ 2Gt−1 we have (using Proposition 4.20 part 1):

ψt−1(w+
t+1)− ψ+

t (w+
t+1) + gt(wt − w+

t+1) ≤
‖gt‖2?η+

t +
(

1
η+t
− 1

ηt−1

)
‖gt‖?
Gt−1

at−1σmin

≤
‖gt‖2?η+

t + 2‖gt‖?Gt−1η
+
t
‖gt‖?
Gt−1

at−1σmin

≤ 3‖gt‖2?η+
t

at−1σmin

so that we can improve our conditional bound to:

ψt−1(w+
t+1)− ψ+

t (w+
t+1) + gt(wt − w+

t+1)

≤


gt · (wt − w+

t+1) when max(‖wt‖, ‖w+
t+1‖) ≤

h−1

(
5

Gt
k2Gt−1

)
at−1

and ‖gt‖? > 2Gt−1

3‖gt‖2η+t
at−1σmin

when max(‖wt‖, ‖w+
t+1‖) ≤

h−1

(
5

Gt
k2Gt−1

)
at−1

and ‖gt‖? ≤ 2Gt−1

0 otherwise

When both ‖w+
t+1‖ and ‖wt‖ are less than than

h−1

(
5

Gt
k2Gt−1

)
at−1

then we also have

‖wt − w+
t+1‖ ≤ min

(
D,max

t
‖wt − w+

t+1‖
)

where we define

D = 2 max
t

h−1
(

5 Gt
k2Gt−1

)
at−1
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Therefore we have

ψt−1(w+
t+1)− ψ+

t (w+
t+1) + gt(wt − w+

t+1)

≤


gt · (wt − w+

t+1) when max(‖wt‖, ‖w+
t+1‖) ≤

h−1
(

5
Gt
Gt−1

)
at−1

and ‖gt‖? > 2Gt−1

3‖gt‖2η+t
at−1σmin

when max(‖wt‖, ‖w+
t+1‖) ≤

h−1

(
5

Gt
k2Gt−1

)
at−1

and ‖gt‖? ≤ 2Gt−1

0 otherwise

≤

{
‖gt‖? min(D,maxt ‖wt − w+

t+1‖), when ‖gt‖ > 2Gt−1

3‖gt‖2?η
+
t

at−1σmin
otherwise

Now we have three more technical lemmas:

Lemma 4.25. Let a1, . . . , aM be a sequence of non-negative numbers such that ai+1 ≥ 2ai. Then

M∑
i=1

ai ≤ 2aM

Proof. We proceed by induction on M . For the base case, we observe that a1 ≤ 2a1. Suppose
∑M−1
i=1 ai ≤

2aM−1. Then we have

M∑
i=1

ai = aM +

M−1∑
i=1

ai

≤ aM + 2aM−1

≤ aM + aM = 2aM

The next lemma establishes some identities analogous to the bounds
∑T
t=1

1√
t

= O(
√
T ), and

∑T
t=1

1
T 2 =

O(1). These are useful for dealing with increasing at in our regret bounds.

Lemma 4.26. 1.

∑
t| ‖gt‖?≤2Gt−1

‖gt‖2?η+
t ≤

2

η+
T
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2. Suppose αt is defined by

α0 =
1

(G1η1)2

αt = max

(
αt−1,

1

(Gtηt)2

)
then

∑
t| ‖gt‖?≤2Gt−1

‖gt‖2?
η+
t

αt−1
≤ 15Gmax

Proof. 1. Using part 1 from Proposition 4.20, and observing that η+
t ≥ ηt, we have

∑
t| ‖gt‖?≤2Gt−1

‖gt‖2?η+
t ≤

∑
t| ‖gt‖?≤2Gt−1

2‖gt‖? min(‖gt‖?, Gt−1)η+
t

≤
∑

t| ‖gt‖?≤2Gt−1

2

(
1

η+
t

− 1

ηt−1

)

≤
∑

t| ‖gt‖?≤2Gt−1

2

(
1

η+
t

− 1

η+
t−1

)

≤ 2η+
T

2. For the second part of the lemma, we observe that for ‖gt‖? ≤ 2Gt−1,

1

(η+
t )2
≥ 1

(ηt−1)2
+ 2‖gt‖? min(Gt−1, ‖gt‖?)

≥ 1

(ηt−1)2
+ ‖gt‖2?

≥ (‖g‖2?)1:t
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Similarly, we also have (‖g‖2?)1:t ≤ (1 +
G2
t

G2
t−1

)(‖g‖2?)1:t−1 so that

1

αt−1
≤ G2

t−1η
2
t−1

≤
G2
t−1

2(‖g‖2?)1:t−1

≤ Gt−1

Gt

G2
t

2(‖g‖2?)1:t−1

≤ Gt−1

Gt

(
1 +

G2
t

G2
t−1

)
G2
t

2(‖g‖2?)1:t

=

(
Gt−1

Gt
+

Gt
Gt−1

)
G2
t

2(‖g‖2?)1:t

≤ 5

4

G2
t

(‖g‖2?)1:t

where in the last line we have used Gt/Gt−1 ≤ 2.

Combining these two calculations, we have

∑
t| ‖gt‖?≤2Gt−1

‖gt‖2?
η+
t

αt−1
≤ 5

4

∑
t| ‖gt‖?≤2Gt−1

‖gt‖2?G2
t

(‖g‖2?)
3/2
1:t

Let T1, T2, . . . , Tn be the indices such that ‖gTi‖? > 2GTi−1, and define Tn = T + 1. We will show

that for any i with Ti+1 > Ti + 1,

Ti+1−1∑
t=Ti+1

‖gt‖2?G2
t

(‖g‖2?)
3/2
1:t

≤ 6GTi+1−1 (4.3)

Observe that for N = Ti + 1, we have

N∑
t=Ti+1

‖gt‖2?G2
t

(‖g‖2?)
3/2
1:t

≤ 6GN −
2G2

N√
(‖g‖2?)1:N

(4.4)

We’ll prove by induction that equation (4.4) holds for all N ≤ Ti+1 − 1. Suppose it holds for some

N < Ti+1 − 1. Then by concavity of − 1√
x

, we have

(
6GN+1 −

2G2
N+1√

(‖g‖2?)1:N+1

)
−

(
6GN+1 −

2G2
N+1√

(‖g‖2?)1:N

)
≥
‖gN+1‖2?G2

N+1

(‖g‖2?)
3/2
1:N+1
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So using the inductive hypothesis:

N+1∑
t=1

‖gt‖2?G2
t

(‖g‖2?)
3/2
1:t

≤

(
6GN −

2G2
N√

(‖g‖2?)1:N

)
+
‖gN+1‖2?G2

N+1

(‖g‖2?)
3/2
1:N+1

=

(
6GN+1 −

2G2
N+1√

(‖g‖2?)1:N

)
+
‖gN+1‖2?G2

N+1

(‖g‖2?)
3/2
1:N+1

+ 6(GN −GN+1)−
2(G2

N −G2
N+1)√

(‖g‖2?)1:N

≤ 6GN+1 −
2GN+12√

(‖g‖2?)1:N+1

+ 6(GN −GN+1)−
2(G2

N −G2
N+1)√

(‖g‖2?)1:N

To finish the induction, we show that 6(GN − GN+1) − 2(G2
N−G

2
N+1)√

(‖g‖2?)1:N
≤ 0. We factor out the non-

negative quantity GN+1 − GN , and then observe that GN+1 ≤ 2GN since Ti + 1 ≤ N < N + 1 ≤
Ti+1 − 1 (and in particular, GN+1 6= Ti for any i).

−6 +
2(GN +GN+1)√

(‖g‖2?)1:N

≤ −6 +
6GN√

(‖g‖2?)1:N

≤ 0

Therefore equation (4.4) holds for all N ≤ Ti+1 − 1, so that we have

Ti+1−1∑
t=Ti+1

‖gt‖2?G2
t

(‖g‖2?)
3/2
1:t

≤ 6GTi+1−1 −
2G2

Ti+1−1√
(‖g‖2?)1:T

≤ 6GTi+1−1 (4.5)

so that equation (4.3) holds. Now we write (using the convention that
∑z
t=x yt = 0 if z < x):

∑
t| ‖gt‖?≤2Gt−1

‖gt‖2?G2
t

(‖g‖2?)
3/2
1:t

=

n+1∑
i=1

Ti+1−1∑
t=Ti+1

‖gt‖2?G2
t

(‖g‖2?)
3/2
1:t

≤
n+1∑
i=1

6GTi+1−1

≤ 12Gmax

where in the last step we have observed that by definition of Ti, GTi+1−1 ≥ 2GTi−1 for all i and used

Lemma 4.25.

Finally, we conclude

∑
t| ‖gt‖?≤2Gt−1

‖gt‖2?
η+
t

at
≤ 5

4

T∑
t=1

‖gt‖2?G2
t

(‖g‖2?)
3/2
1:t

≤ 15Gmax
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Lemma 4.27. Let αt be defined by

α0 =
1

(G1η1)2

αt = max

(
αt−1,

1

(Gtηt)2

)
Then

2(‖g‖?)1:t

Gt
≥ at ≥

2(‖g‖2?)1:t

G2
t

Proof. Since 1
η2t
≥ 2(‖g‖2?)1:t, we immediately recover the lower bound on at. The upper bound follows

from Proposition 4.20 (part 2), which states 1
η2t
≤ 2Gt(‖g‖?)1:t

Now we’re ready to prove Theorem 4.7, which we restate for reference:

Theorem 4.7. Suppose ψ is a (σ, ‖ · ‖)-adaptive regularizer and g1, . . . , gT is some arbitrary sequence of

subgradients. Let k ≥ 1, and let ψt be defined as in Definition 4.6.

Set

σmin = inf
‖w‖≤h−1(10/k2)

kσ(w)

D = max
t

G2
t−1

(‖g‖2?)1:t−1
h−1

(
5Gt

k2Gt−1

)
QT = 2

‖g‖1:T

Gmax

Then FTRL with regularizers ψt achieves regret

RT (ẘ) ≤ k

QT ηT
ψ(QTu) +

45Gmax

σmin
+ 2GmaxD

≤ kGmax
ψ(2uT )√

2T
+

45Gmax

σmin
+ 2GmaxD
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Proof. Using Theorem 4.14 and Lemmas 4.23 and 4.24, our regret is bounded by

RT (ẘ) ≤ ψ+
T (ẘ) +

T∑
t=1

ψt−1(w+
t+1)− ψ+

t (w+
t+1) + gt(wt − w+

t+1)

+

T∑
t=1

ψ+
t (w+

t+2)− ψt(w+
t+2)

≤ ψ+
T (ẘ) +

T∑
t=1

ψt−1(w+
t+1)− ψ+

t (w+
t+1) + gt(wt − w+

t+1)

≤ ψ+
T (ẘ) +

∑
‖gt‖?≤2Gt−1

3‖gt‖2η+
t

at−1σmin
+

∑
‖gt‖?>2Gt−1

‖gt‖?D′

where D′ is defined by

D′ = 2 max
t

h−1
(

5 Gt
kGt−1

)
at−1

Now we use Lemma 4.27 to conclude that

D′ ≤ D = max
t

G2
t−1

(‖g‖2?)1:t−1
h−1

(
5

Gt
kGt−1

)
so that we have

RT (ẘ) ≤ ψ+
T (ẘ) +

∑
‖gt‖?≤2Gt−1

3‖gt‖2η+
t

at−1σmin
+

∑
‖gt‖?>2Gt−1

‖gt‖?D

Now using Lemma 4.26 we can simplify this to

RT (ẘ) ≤ k

aT η
+
T

ψ(aT ẘ) +
45Gmax

σmin
+

∑
‖gt‖?>2Gt−1

‖gt‖?D

Finally, observe that each value of ‖gt‖? in the sum
∑
‖gt‖?>2Gt−1

‖gt‖?D is at least twice the previous

value, so that by Lemma 4.25 we conclude

RT (ẘ) ≤ k

aT η
+
T

ψ(aT ẘ) +
45Gmax

σmin
+ 2GmaxD

Finally, we observe that (by Lemma 4.27), aT ≤ 2‖g‖1:TGT
= QT , which gives the first inequality in the

Theorem statement.

Using the fact that 1
ηt
≤
√

2Gmax(‖g‖?)1:t (from Proposition 4.20 part 2), we have η+
T ≥

1
Gmax

√
2T

and

it is clear that aT ≤ 2T , so that we recover the second inequality as well.



Chapter 5

Reductions For Parameter-free Online
Learning

In this chapter we introduce an alternative approach to the design of parameter-free algorithms that dramati-

cally simplifies their design and analysis. Recall that in the previous chapter, we analyzed algorithms using

the classic FTRL approach, which resulted in extremely complicated proofs because we were unable to use

strongly-convex regularizers (at least in the usual sense of the term). The techniques in this chapter are instead

based on the coin betting framework for designing algorithm (recall Section 2.5), which turns out to be much

better suited for parameter-free algorithms. To respect the exponential lower-bound in the previous chapter,

throughout this chapter we will assume a known bound on Gmax and instead focus on providing algorithms

that adapt to finer-grained statistics of the gt. In particular, we will assume WLOG thatGmax = 1, potentially

by rescaling all losses by a constant factor. We will eventually show that adapting to these more fine-grained

statistics, while on the surface a relatively subtle distinction, actually leads to significant asymptotic savings

when the the losses `t are strongly-convex or smooth (recall Definitions 2.11 and 2.13 (without knowing the

strong convexity or smoothness parameters). Most of the material in this chapter is taken from my paper with

Francesco Orabona [16], with a few new additions in the later sections.

Our primary techniques are a series of three reductions that streamline the design of parameter-free algo-

rithms by constructing them from simpler algorithms. First, we show that algorithms for online exp-concave

optimization imply parameter-free algorithms for OLO (Section 5.1). Second, we show a general reduction

from online learning in arbitrary dimensions with any norm to one-dimensional online learning (Section 5.2).

Third, given any two convex sets W ⊂ V , we construct an online learning algorithm over W from an online

learning algorithm over V (Section 5.3).

All of our reductions are very general. We make no assumptions about the inner workings of the base

algorithms and are able to consider any norm, so that W may be a subset of a Banach space rather than a

Hilbert space or Rd. Each reduction is of independent interest, even for non-parameter-free algorithms, but

67
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Exp-Concave Optimization
⇓

Parameter Free OLO

1D OLO
⇓

Banach Space OLO

Unconstrained OLO
⇓

Constrained OLO

Õ

(√
d
∑T
t=1〈gt, ẘ〉2

)
Õ

(
‖ẘ‖

√∑T
t=1 ‖gt‖2?

)
Multi-scale

experts
Adapt to
curvature

Figure 5.1: We prove three reductions (top row), and use these reductions to obtain specific algorithms and
regret bounds (bottom row). Arrows indicate which reductions are used in each algorithm.

by combining them we can produce powerful new algorithms.

First, we use our reductions to design a new parameter-free algorithm that improves upon the prior regret

bounds, achieving

RT (ẘ) ≤ ‖ẘ‖

√√√√ T∑
t=1

‖gt‖2? ln

(
‖ẘ‖

T∑
t=1

‖gt‖2? + 1

)
,

where ‖ · ‖ is any norm and ‖ · ‖? is the dual norm (‖gt‖? = ‖gt‖ when ‖ · ‖ is the 2-norm). Previous

parameter-free algorithms [32; 35; 39; 40; 19; 12; 44] (including FREEREX) obtain at best an exponent of 1

in their dependence on ‖gt‖? (which is worse because ‖gt‖? ≤ 1 by our 1-Lipschitz assumption). Achieving

‖gt‖2? rather than ‖gt‖? can imply asymptotically lower regret when the losses `t are smooth [56], so this is

not merely a cosmetic difference. In addition to the worse regret bound, all prior analyses we are aware of are

quite complicated, and are usually limited to the Hilbert spaces and the 2-norm. In contrast, the techniques

presented in this chapter are both simpler and more general

We will later demonstrate the power of our reductions through several more applications. In Section 5.4

we prove a regret bound of the form RT (ẘ) = Õ

(√
d
∑T
t=1〈gt, ẘ〉2

)
for d-dimensional Banach spaces,

extending the results of [27] to unconstrained domains. In Section 6.1, we consider the multi-scale experts

problem studied in [20; 7] and improve prior regret guarantees and runtimes. Finally, in Chapter 7, we will

investigate the consequences of these reductions for smooth or strongly convex losses, including creating

an algorithm obtaining Õ(
√
T ) regret for general convex losses, but logarithmic regret for strongly-convex

losses using only first-order information, similar to [59; 14], but with runtime improved to match gradient

descent. We summarize these results in Figure 5.1.
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5.1 Exp-Concave Optimization to Online Linear Optimization via Bet-
ting Algorithms

In this section we show how to convert an online exp-concave algorithm to construct a 1D parameter-free

algorithm. Our approach relies on the coin-betting abstraction for the design of parameter-free algorithms

(see Section 2.5). Recall that coin betting strategies record the wealth of the algorithm, which is defined by

some initial (i.e. user-specified) ε plus the total “reward”
∑T
t=1−gtwt it has gained:

WealthT = ε−
T∑
t=1

gtwt . (5.1)

Also recall that given this wealth measurement, coin betting algorithms bet a signed fraction vt ∈ (−1, 1)

of their current wealth on the outcome of the coin gt ∈ [−1, 1] by playing wt = vtWealthT−1. Since high

wealth is equivalent to a low regret the question is how to pick betting fractions vt that guarantee high wealth.

This is usually accomplished through careful design of bespoke potential functions and meticulous algebraic

manipulation, but we take a different and simpler path.

At a high level, our approach is to re-cast the problem of choosing betting fractions vt as itself an on-

line learning problem. We show that this online learning problem has exp-concave losses rather than linear

losses. Exp-concave losses are known to be much easier to optimize than linear losses and it is possible to

obtain ln(T ) regret using the Online Newton Step (ONS) algorithm rather than the
√
T limit for linear opti-

mization [24]. So by using an exp-concave optimization algorithm such as ONS, we find the optimal betting

fraction v̊ very quickly, and obtain high wealth. The pseudocode for the resulting strategy is in Algorithm 2.

Algorithm 2 Coin-Betting through ONS

Require: Initial wealth ε > 0
1: Initialize: Wealth0 = ε, initial betting fraction v1 = 0
2: for t = 1 to T do
3: Bet wt = vt Wealtht−1

4: Receive gt ∈ [−1, 1]
5: Update Wealtht = Wealtht−1 − gtwt
6: //compute new betting fraction vt+1 ∈ [−1/2, 1/2] via ONS update on losses − ln(1− gtv)
7: Set zt = d

dvt
(− ln(1− gtvt)) = gt

1−gtvt
8: Set At = 1 +

∑t
i=1 z

2
i

9: vt+1 = max
(

min
(
vt − 2

2−ln(3)
zt
At
, 1/2

)
,−1/2

)
10: end for

Later (in Section 5.4), we will see that this same 1D argument holds seamlessly in Banach spaces, where

now the betting fraction vt is a vector in the Banach space and the outcome of the coin gt is a vector in the

dual space with norm bounded by 1. We therefore postpone computing exact constants for the Big-O notation

in Theorem 5.1 to the more general Theorem 5.7.
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It is important to note that ONS in 1D is extremely simple to implement. Even the projection onto a

bounded set becomes just a truncation between two real numbers, so that Algorithm 2 can run quickly. We

can show the following regret guarantee:

Theorem 5.1. For |gt| ≤ 1, Algorithm 2, guarantees the regret bound:

RT (ẘ) = O

ε+ max

|ẘ| ln[ |ẘ|∑T
t=1 g

2
t

ε

]
, |ẘ|

√√√√ T∑
t=1

g2
t ln

[
|ẘ|2

∑T
t=1 g

2
t

ε2
+ 1

] .

Proof. Define WealthT (̊v) to be wealth of the betting algorithm that bets the constant (signed) fraction v̊ on

every round, starting from initial wealth ε > 0.

We begin with the regret-reward duality that is the start of all coin-betting analyses [40]. Suppose that we

obtain a bound WealthT ≥ fT
(
−
∑T
t=1 gt

)
for some fT . Then,

RT (ẘ)− ε = −WealthT −
T∑
t=1

gtẘ ≤ −
T∑
t=1

gtẘ − fT

(
−

T∑
t=1

gt

)
≤ sup
G∈R

Gẘ − fT (G) = f?T (ẘ),

where f?T indicates the Fenchel conjugate, defined by f?T (x) = supθ θx− fT (θ).

So, now it suffices to prove a wealth lower bound. First, observing that WealthT = WealthT−1 −
WealthT−1gtvt, we derive a simple expression for ln WealthT by recursion:

ln WealthT = ln (WealthT−1(1− gtvt)) = ln(ε) +

T∑
t=1

ln(1− vtgt) .

Similarly, we have ln WealthT (̊v) = ln(ε) +
∑T
t=1 ln(1− v̊gt). We subtract the identities to obtain

ln WealthT (̊v)− ln WealthT =

T∑
t=1

− ln(1− vtgt)− (− ln(1− v̊gt)) . (5.2)

Now, the key insight of this analysis: we interpret equation (5.2) as the regret of an algorithm playing vt on

losses `t(v) = − ln(1− vgt), so that we can write

ln WealthT = ln WealthT (̊v)−RvT (̊v), (5.3)

where RvT (̊v) is the regret of our method for choosing vt.

For the next step, observe that − ln(1 − gtv) is exp-concave (a function f is exp-concave if exp(−f)

is concave), so that choosing vt is an online exp-concave optimization problem. Prior work on exp-concave

optimization allows us to obtain RvT (̊v) = O
(

ln
(∑T

t=1 g
2
t

))
for any |̊v| ≤ 1

2 using the ONS algorithm.

Therefore (dropping all constants for simplicity), we use (5.3) to obtain WealthT ≥ WealthT (̊v)/
∑T
t=1 g

2
t

for all |̊v| ≤ 1
2 .

Finally, we need to show that there exists v̊ such that WealthT (̊v)/
∑T
t=1 g

2
t is high enough to guarantee



CHAPTER 5. REDUCTIONS FOR PARAMETER-FREE ONLINE LEARNING 71

low regret on our original problem. Consider v̊ =
−
∑T
t=1 gt

2
∑T
t=1 g

2
t+2|∑T

t=1 gt|
∈ [−1/2, 1/2]. Then, we invoke the

tangent bound ln(1 + x) ≥ x− x2 for x ∈ [−1/2, 1/2] (e.g. see [8]) to see:

ln WealthT (̊v)− ln(ε) =

T∑
t=1

ln(1− gtv̊) ≥ −
T∑
t=1

gtv̊ −
T∑
t=1

(gtv̊)2 ≥ (
∑T
t=1 gt)

2

4
∑T
t=1 g

2
t+4|∑T

t=1 gt|
.

Overall we have obtained

WealthT ≥ ε exp

[
(
∑T
t=1 gt)

2

4
∑T
t=1 g

2
t+4|∑T

t=1 gt|

]/ T∑
t=1

g2
t = fT

(
T∑
t=1

gt

)
,

where fT (x) = ε exp[x2/(4
∑T
t=1 g

2
t+4|x|)]/

∑T
t=1 g

2
t . To obtain the desired result, we recall that WealthT ≥

fT

(∑T
t=1 gt

)
implies RT (ẘ) ≤ ε+ f?T (ẘ), and calculate f?T (see Lemma 5.27).

In order to implement the algorithm, we observe that our chosen reference betting fraction v̊ lies in

[−1/2, 1/2], so we can safely run ONS restricted to the domain [−1/2, 1/2]. Exact constants can be com-

puted by substituting the constants coming from the ONS regret guarantee, as we do in the proof of Theo-

rem 5.7.

5.2 From 1D Algorithms to Dimension-Free Algorithms

A common strategy for designing parameter-free algorithms is to first create an algorithm for 1D problems

(as we did in the previous section), and then invoke some particular algorithm-specific analysis to extend

the algorithm to high dimensional spaces [40; 13; 35]. This strategy is unappealing for a couple of reasons.

First, these arguments are often somewhat tailored to the algorithm at hand, and so a new argument must be

made for a new 1D algorithm (indeed, it is not clear that any prior dimensionality extension arguments apply

to our Algorithm 2). Secondly, all such arguments we know of apply only to Hilbert spaces and so do not

allow us to design algorithms that consider norms other than the standard Euclidean 2-norm. In this section

we address both concerns by providing a black-box reduction from optimization in any Banach space to 1D

optimization. In further contrast to previous work, our reduction can be proven in just a few lines.

Our reduction takes two inputs: an algorithmA1D that operates with domain R and achieves regretR1
T (ẘ)

for any ẘ ∈ R, and an algorithmAS that operates with domain equal to the unit ball S in some Banach space

B, S = {x ∈ B : ‖x‖ ≤ 1} and obtains regret RAST (ẘ) for any ẘ ∈ S. In the case when B is Rd or a

Hilbert space, then online gradient descent with adaptive step sizes can obtain RAST (ẘ) =
√

2
∑T
t=1 ‖gt‖22

(which is independent of ẘ) [25].

Given these inputs, the reduction uses the 1D algorithm A1D to learn a “magnitude” z and the unit-ball

algorithm AS to learn a “direction” y. This direction and magnitude are multiplied together to form the

final output w = zy. Given a gradient g, the “magnitude error” is given by 〈g, y〉, which is intuitively the

component of the gradient parallel to w. The “direction error” is just g. Our reduction is described formally
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in Algorithm 3 below.

Algorithm 3 One Dimensional Reduction

Require: 1D Online learning algorithm A1D, Banach space B and Online learning algorithm AS with do-
main equal to unit ball S ⊂ B

1: for t = 1 to T do
2: Get point zt ∈ R from A1D
3: Get point yt ∈ S from AS
4: Play wt = ztyt ∈ B
5: Receive subgradient gt
6: Set st = 〈gt, yt〉
7: Send st as the tth subgradient to A1D
8: Send gt as the tth subgradient to AS
9: end for

Theorem 5.2. Suppose AS obtains regret RAST (ẘ) for any competitor ẘ in the unit ball and A1D obtains

regret R1
T (ẘ) for any competitor ẘ ∈ R. Then Algorithm 3 guarantees regret:

RT (ẘ) ≤ R1
T (‖ẘ‖) + ‖ẘ‖RAST (ẘ/‖ẘ‖) .

Where by slight abuse of notation we set ẘ/‖ẘ‖ = 0 when ẘ = 0 Further, the subgradients st sent to A1D

satisfy |st| ≤ ‖gt‖?.

Proof. First, observe that |st| ≤ ‖gt‖?‖yt‖ ≤ ‖gt‖? since ‖yt‖ ≤ 1 for all t. Now, compute:

RT (ẘ) =

T∑
t=1

〈gt, wt − ẘ〉 =

T∑
t=1

〈gt, ztyt〉 − 〈gt, ẘ〉

=

T∑
t=1

〈gt, yt〉zt − 〈gt, yt〉‖ẘ‖︸ ︷︷ ︸
regret ofA1D at ‖ẘ‖∈R

+〈gt, yt〉‖ẘ‖ − 〈gt, ẘ〉

= R1
T (‖ẘ‖) +

T∑
t=1

〈gt, yt〉‖ẘ‖ − 〈gt, ẘ〉

≤ R1
T (‖ẘ‖) + ‖ẘ‖

T∑
t=1

〈gt, yt〉 − 〈gt, ẘ/‖ẘ‖〉︸ ︷︷ ︸
regret ofAS at ẘ/‖w‖∈S

≤ R1
T (‖ẘ‖) + ‖ẘ‖RAST (ẘ/‖ẘ‖),

With this reduction in hand, designing dimension-free and parameter-free algorithms is now exactly as

easy as designing 1D algorithms, so long as we have access to a unit-ball algorithm AS . As mentioned, for

any Hilbert space we indeed have such an algorithm. In general, algorithms AS exist for most other Banach
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spaces of interest [57], and in particular one can achieve RAST (ẘ) ≤ O

(√
1
λ

∑T
t=1 ‖gt‖2?

)
whenever B is

(2, λ)-uniformly convex [47] using the Follow-the-Regularized-Leader algorithm with regularizers scaled by
√
λ√∑t

i=1 ‖gi‖2?
[34]. When B is instead (p,D)-uniformly convex, for p < 2, then it is actually impossible

to obtain O(
√
T ) regret. However, the Mirror Descent algorithm, with appropriate regularizers, can obtain

O(T 1/p) regret in the unit ball, which gives us a corresponding regret guerantee for unconstrained domains.

Applying Algorithm 3 to our 1D Algorithm 2, for any (2, λ)-uniformly convex B, we obtain:

RT (ẘ) = O

‖ẘ‖max

ln
‖ẘ‖

∑T
t=1 ‖gt‖2?
ε

,

√√√√ T∑
t=1

‖gt‖2? ln

(
‖ẘ‖2

∑T
t=1 ‖gt‖2?
ε2

+ 1

)
+
‖ẘ‖√
λ

√√√√ T∑
t=1

‖gt‖2? + ε

 .

Spaces that satisfy this property include Hilbert spaces such as Rd with the 2-norm (in which case λ = 1),

as well the Rd with the p-norm for p ∈ (1, 2] (in which case λ = p − 1). Finally, observe that the runtime

of this reduction is equal to the runtime of A1D plus the runtime of AS , which in many cases (including Rd

with 2-norm or Hilbert spaces) is the same as online gradient descent.

Not only does this provide the fastest known parameter-free algorithm for an arbitrary norm, it is also

the first parameter-free algorithm to obtain a dependence on the gradients of ‖gt‖2? rather than ‖gt‖?. This

improved bound immediately implies much lower regret in easier settings, such as smooth losses with small

loss values at ẘ [56].

5.2.1 Alternate Reduction Without Unit-Ball Algorithm

The reduction of Algorithm 3 relies on the unit-ball algorithm AS . Although these algorithms do exist for

all (p, λ)-uniformly convex Banach spaces, it might be more desirable to have a more explicit reduction.

We address this concern with Algorithm 4 below, which provides an alternative reduction with an explicit

formula for the “direction” vector. Interestingly, the strategy for choosing the direction does not appear to be

a valid unit-ball online learning algorithm and so this reduction is not a special case of the previous one.

Theorem 5.3. Suppose W is a (q,D)-uniformly convex reflexive Banach space for some q ≥ 1 such that

‖ · ‖p? is Frechet differentiable. Let A be a 1-dimensional online learning algorithm that guarantees regret

R1
T (ẘ). Then:

1. For p = q
q−1 , there exists C such that ‖ · ‖p satisfies

‖x+ y‖p? ≤ ‖x‖p? + 〈∇‖x‖p?, y〉+ C‖y‖p?
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2. The reduction Algorithm 4 guarantees:

‖g1:T ‖ ≤ |s1:T |+ (2p + C‖g‖p1:T )
1/p

and each st satisfies |st| ≤ ‖gt‖.

3.

RT (ẘ) ≤ max
c∈{±1}

R1
T (c‖ẘ‖) + ‖ẘ‖ (2p + C‖g‖p1:T )

1/p

Algorithm 4 One dimensional to p-smooth banach space reduction

Input: Online learning algorithm A
for t = 1 to T do

Get point zt ∈ R from A.
Play wt = ztsign(s1:t−1)

∇‖g1:t−1‖p?
p‖g1:t−1‖p−1 , (or if g1:t−1 = 0 play wt = ztv for some arbitrary unit vector v)

Receive subgradient gt.
Set st = sign(s1:t−1)

〈∇‖g1:t−1‖p?,gt〉
p‖g1:t−1‖p−1

?
(or st = gt · v if g1:t−1 = 0 for the same arbitrary unit vector v).

Send st as the tth gradient to A.
end for

By giving an explicit formula for generating direction vectors in Banach spaces, we can actually make

slightly more detailed bounds by inspecting the properties of the direction vectors. For example, in a Hilbert

space we have p = 2 and a little calculation shows that |st| ≤ ‖g‖t ‖?, where g‖t is the projection of gt onto the

1-D subspace spanned by g1:t−1. Now suppose we have R1
T (X) = Õ(|X|

√
s2

1:T ). Then by tracing through

the proof of Theorem 5.3, we actually get an improved regret bound of

RT (ẘ) ≤ Õ
(
‖ẘ‖

√
‖g‖‖2?1:T

)
+O

(
‖ẘ‖

√
‖g‖2?1:T

)

So that we lose the logarithmic term in the Õ if g‖t = 0 for all t (in other words, if gt is always perpendicular

to g1:t−1). This property is actually shared by many previous algorithms (including FREEREX), but is not

easily extracted from the analysis. Here we are able to clearly articulate this behavior, and even observe the

graceful degradation of the bound to obtain the extra logarithmic factor.

proof of Theorem 5.3. First, the existence of the constant C follows because the dual of a (q,D)-uniformly

convex Banach space is necessarily (p, C/2)-smooth for some C (see [48]). Then since p ≥ 1, ‖ · ‖p? is

convex and so by Lemma 5.14 we have the desired statement.

Now we prove the second part of the theorem by induction. Suppose ‖g1:K‖? ≤ |s1:K |+(1+C‖g‖?p1:K)1/p

for some K. Then we will show ‖g1:K+1‖? ≤ |s1:K+1| + (1 + C‖g‖?p1:K+1)1/p. We consider two cases,

either ‖g1:K‖? + 〈∇‖g1:K‖?p,gK+1〉
p‖g1:K‖p−1

?
≥ 0, or not.
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Case 1: ‖g1:K‖? + 〈∇‖g1:K‖?p,gK+1〉
p‖g1:K‖p−1

?
≥ 0:

By smoothness, we have

‖g1:K + gK+1‖? = (‖g1:K + gK+1‖p?)
1/p

≤ (‖g1:K‖p? + 〈∇‖g1:K‖p?, gK+1〉+ C‖gK+1‖p?)
1/p

≤
[(
‖g1:K‖? +

〈∇‖g1:K‖p?, gK+1〉
p‖g1:K‖p−1

?

)p
+ C‖gK+1‖p?

]1/p

Where the third line follows because

xp + pyxp−1 ≤ (x+ y)p

whenever x ≥ 0 and x+ y ≥ 0 by convexity of the function x 7→ xp for positive x.

Now use the induction hypothesis:

‖g1:K + gK+1‖? ≤

((
|s1:K |+ (2p + C‖g‖?p1:K)1/p +

〈∇‖g1:K‖?p, gK+1〉
p‖g1:K‖?p−1

)p
+ C‖gK+1‖?p

)1/p

≤

((∣∣∣∣∣|s1:K |+
〈∇‖g1:K‖?p, gK+1〉

p‖g1:K‖?p−1

∣∣∣∣∣+ (2p + C‖g‖?p1:K)1/p

)p
+ C‖gK+1‖p?

)1/p

Next we need a technical observation: for any positive A, B and x, we have

(A+B)p −Bp ≤ (A+B + x)p − (B + x)p

which can be verified by differentiating with respect to x.

Therefore we have, with A =
∣∣∣|s1:K |+ 〈∇‖g1:K‖p?,gK+1〉

p‖g1:K‖p−1
?

∣∣∣, B = (2p + C‖g‖?p1:K)1/p and B + x =(
2p + C‖g‖?p1:K+1

)1/p
:

‖g1:K + gK+1‖? ≤ ((A+B)
p −Bp +Bp + C‖gK+1‖p?)

1/p

≤ ((A+B + x)
p − (B + x)p +Bp + C‖g‖p?)

1/p

=
(
(A+B + x)

p − 2p − C‖g‖?p1:K+1 + 2p + C‖g‖?p1:K + C‖gK+1‖p?
)1/p

= A+B + x

=

∣∣∣∣|s1:K |+
〈∇‖g1:K‖p?, g〉
p‖g1:K‖p−1

?

∣∣∣∣+
(
2p + C‖g‖?p1:K+1

)1/p
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Next observe:

|s1:K+1| =
∣∣∣∣s1:K + sign(s1:K)

〈∇‖g1:K‖p?, gK+1〉
p‖g1:K‖p−1

?

∣∣∣∣
=

∣∣∣∣|s1:K |+
〈∇‖g1:K‖p?, gK+1〉

p‖g1:K‖p−1
?

∣∣∣∣
Combining these two calculations:

‖g1:K + gK+1‖? ≤
∣∣∣∣|s1:K |+

〈∇‖g1:K‖p?, gK+1〉
p‖g1:K‖p−1

?

∣∣∣∣+
(
2p + C‖g‖?p1:K+1

)1/p
= |s1:K+1|+

(
2p + C‖g‖?p1:K+1

)1/p
Case 2 ‖g1:K‖? +

〈∇‖g1:K‖p?,gK+1〉
p‖g1:K‖p−1

?
< 0:

In this case, observe that ∇‖g1:K‖p? = p‖g1:K‖p−1
? ∇‖g1:K‖? where ∇‖g1:K‖? denotes the gradient

(Frechet derivative) of ψ(x) = ‖x‖? at x = g1:K . Therefore,

0 > ‖g1:K‖? +
〈∇‖g1:K‖p?, gK+1〉

p‖g1:K‖p−1
?

= ‖g1:K‖? + 〈∇‖g1:K‖?, gK+1〉

Next, for any differentiable G-Lipschitz function ψ,

ψ(x+ y) ≤ ψ(x) +G‖y‖?

= ψ(x) + 〈∇ψ(x), y〉+G‖y‖? − 〈∇ψ(x), y〉

≤ ψ(x) + 〈∇ψ(x), y〉+ 2G‖y‖?

Now since all norms are 1-Lipschitz with respect to themselves, we have

‖g1:K + gK+1‖? ≤ ‖g1:K‖? + 〈∇‖g1:K‖?, gK+1〉+ 2‖gK+1‖?

≤ 2‖gK+1‖?

≤ 2

≤ |s1:K+1|+
(
2p + C‖g‖?p1:K+1

)1/p
This concludes the proof of the first statement.

To see that |st| ≤ ‖gt‖?, recall that∇‖g1:K‖p? = p‖g1:K‖p−1
? ∇‖g1:K‖?. Now since ‖ · ‖? is 1-Lipschitz

with respect to itself, this implies as a corollary that |st| ≤ |〈∇‖g1:K‖?, gt〉| ≤ ‖gt‖?.
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Finally, it remains to show the regret bound. To do this we will make use of the first part of the theorem:

RT (ẘ) =

T∑
t=1

〈gt, wt〉 − 〈gt, ẘ〉

=

T∑
t=1

〈
ztsign(s1:t−1)

∇‖g1:t−1‖p?
p‖g1:t−1‖p−1

, gt

〉
− 〈gt, ẘ〉

=

T∑
t=1

〈
sign(s1:t−1)

∇‖g1:t−1‖p?
p‖g1:t−1‖p−1

, gt

〉
zt − 〈gt, ẘ〉

=

T∑
t=1

stzt − 〈gt, ẘ〉

=

T∑
t=1

stzt + s1:T sign(s1:T )‖ẘ‖︸ ︷︷ ︸
Regret ofA at sign(s1:T )‖ẘ‖

−s1:T sign(s1:T )‖ẘ‖ −
T∑
t=1

〈gt, ẘ〉

≤ sup
c∈{±1}

R1
T (c‖ẘ‖)− s1:T sign(s1:T )‖ẘ‖ −

T∑
t=1

〈gt, ẘ〉

≤ sup
c∈{±1}

R1
T (c‖ẘ‖)− |s1:T |‖ẘ‖+ ‖g1:T ‖?‖ẘ‖

≤ sup
c∈{±1}

R1
T (c‖ẘ‖) + ‖ẘ‖ (‖g1:T ‖? − |s1:T |)

≤ sup
c∈{±1}

R1
T (c‖ẘ‖) + ‖ẘ‖ (2p + C‖g‖p1:T )

1/p

where the last inequality uses the second part of the Theorem.

5.3 Reduction to Constrained Domains

The previous algorithms have dealt with optimization over an entire vector space. Although this is a com-

mon and important case in practice, sometimes we must perform optimization with constraints in which

each wt and the comparison point ẘ must lie in some convex domain W that is not an entire vector space.

This constrained problem is often solved with the classical Mirror Descent [60] or Follow-the-Regularized-

Leader [52] analysis. However, these approaches have drawbacks: for unbounded sets, they typically main-

tain regret bounds that have suboptimal dependence on ẘ, or, for bounded sets, they depend explicitly on the

diameter of W . We will address these issues with a simple reduction. Given any convex domain V ⊃W and

an algorithm A that maintains regret RAT (ẘ) for any ẘ ∈ V , we obtain an algorithm that maintains 2RAT (ẘ)

for any ẘ in W .

Before giving the reduction, we define the distance to a convex set W as SW (x) = infd∈W ‖x − d‖ as
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well as the projection toW as ΠW (x) = {d ∈W : ‖d−x‖ ≤ ‖c−x‖,∀c ∈W}. Note that ifB is reflexive,1

ΠW (x) 6= ∅ and that it is a singleton if B is a Hilbert space [30, Exercise 4.1.4].

The intuition for our reduction is as follows: given a vector zt ∈ V from A, we predict with any wt ∈
ΠW (zt). Then give A a subgradient at zt of the surrogate loss function 〈gt, ·〉 + ‖gt‖?SW , which is just the

original linearized loss plus a multiple of SW . The additional term SW serves as a kind of Lipschitz barrier

that penalizes A for predicting with any zt /∈W . Pseudocode for the reduction is given in Algorithm 5.

Algorithm 5 Constraint Set Reduction

Require: Convex closed domainW in a reflexive Banach spaceB, Online learning algorithmAwith domain
V ⊃W

1: for t = 1 to T do
2: Get point zt ∈ V from A
3: Play wt ∈ ΠW (zt)
4: Receive gt ∈ ∂`t(wt)
5: Set ˜̀

t(x) = 1
2 (〈gt, x〉+ ‖gt‖?SW (x))

6: Compute g̃t ∈ ∂ ˜̀
t(zt)

7: Send g̃t as tth subgradient to A
8: end for

Theorem 5.4. Assume that the algorithm A obtains regret RAT (ẘ) for any ẘ ∈ V . Then Algorithm 5

guarantees regret:

RT (ẘ) =

T∑
t=1

〈gt, wt − ẘ〉 ≤ 2RAT (ẘ), ∀ẘ ∈W .

Further, the subgradients g̃t sent to A satisfy ‖g̃t‖? ≤ ‖gt‖?.

Before proving this Theorem, we need a small technical Proposition, proved in Appendix 5.D.

Proposition 5.5. SW is convex and 1-Lipschitz for any closed convex set W in a reflexive Banach space B.

of Theorem 5.4. From Proposition 5.5, we observe that since SW is convex and ‖gt‖? ≥ 0, ˜̀
t is convex for

all t. Therefore, by A’s regret guarantee, we have

T∑
t=1

˜̀
t(zt)− ˜̀

t(ẘ) ≤ RAT (ẘ) .

Next, since ẘ ∈ W , 〈gt, ẘ〉 = 2˜̀
t(ẘ) for all t. Further, since wt ∈ ΠW (zt), we have 〈gt, zt〉+ ‖gt‖?‖wt −

zt‖ = 2˜̀
t(zt). Finally, by the definition of dual norm we have

〈gt, wt − ẘ〉 ≤ 〈gt, zt − ẘ〉+ ‖gt‖?‖wt − zt‖ = 2˜̀
t(zt)− 2˜̀

t(ẘ) .

Combining these two lines proves the regret bound of the theorem. The bound on ‖g̃t‖? follows because SW
is 1-Lipschitz, from Proposition 5.5.

1All Hilbert spaces and finite-dimensional Banach spaces are reflexive - see Section 2.1.
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Algorithm 6 Banach-space betting through ONS

Require: Real Banach space B, initial linear operator L : B → B?, initial wealth ε > 0
1: Initialize: Wealth0 = ε, initial betting fraction v1 = 0 ∈ S = {x ∈ B : ‖x‖ ≤ 1

2}
2: for t = 1 to T do
3: Bet wt = vt Wealtht−1

4: Receive gt, with ‖gt‖? ≤ 1
5: Update Wealtht = Wealtht−1 − 〈gt, wt〉
6: //compute new betting fraction vt+1 ∈ S via ONS update on losses − ln(1− 〈gt, v〉):
7: Set zt = d

dvt
(− ln(1− 〈gt, vt〉)) = gt

1−〈gt,vt〉

8: Set At(x) = L(x) +
∑t
i=1 zi〈zi, x〉

9: vt+1 = ΠAt
S (vt − 2

2−ln(3)A
−1
t (zt)), where ΠAt

S (x) = argminy∈S 〈At(y − x), y − x〉
10: end for

We conclude this section by observing that in many cases it is very easy to compute an element of ΠW

and a subgradient of SW . For example, when W is a unit ball, it is easy to see that ΠW (x) = x
‖x‖ and

∂SW (x) = ∂‖x‖ for any x not in the ball. In general, we provide the following result that often simplifies

computing the subgradient of SW (proved in Appendix 5.D):

Theorem 5.6. LetB be a reflexive Banach space such that for every 0 6= b ∈ B, there is a unique dual vector

b? such that ‖b?‖? = 1 and 〈b?, b〉 = ‖b‖. Let W ⊂ B a closed convex set. Given x ∈ B and x /∈ W , let

p ∈ ΠW (x). Then {(x− p)?} = ∂SW (x).

5.4 Banach-space betting through ONS

In this section, we present the Banach space version of the one-dimensional Algorithm 2. The pseudocode is

in Algorithm 6. We state the algorithm in its most general Banach space formulation, which obscures some

of its simplicity in more common scenarios. For example, when B is Rd equipped with the p-norm, then the

linear operator L can be taken to be simply the identity map I : Rd → Rd ∼= (Rd)?, and the ONS portion of

the algorithm is the standard d-dimensional ONS algorithm.

We give the regret guarantee of Algorithm 6 in Theorem 5.7. The proof, modulo technical details of ONS

in Banach spaces, is identical to Theorem 5.1, and can be found in Appendix 5.C.

Theorem 5.7. Let B be a d-dimensional real Banach space and u ∈ B be an arbitrary unit vector. Then,

there exists a linear operator L such that using the Algorithm 6, we have for any ẘ ∈ B,

RT (ẘ) ≤ ε+ ‖ẘ‖max

d
2
− 8 + 8 ln

8‖ẘ‖
(

1 + 4
∑T
t=1 ‖gt‖2?

)4.5d

ε

 ,

2

√√√√√ T∑
t=1

〈gt, ẘ〉2 ln

5‖ẘ‖2
ε2

(
8

T∑
t=1

‖gt‖2 + 2

)9d+1

+ 1


 .
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The main particularity of this bound is the presence of the terms
√
d
∑T
t=1〈gt, ẘ〉2 rather than the usual

‖ẘ‖
√∑T

t=1 ‖gt‖2?. We can interpret this bound as being adaptive to any sequence of norms ‖ · ‖1, . . . , ‖ ·

‖t because
√
d
∑T
t=1〈gt, ẘ〉2 ≤

√
d
∑T
t=1 ‖ẘ‖2t (‖gt‖t)2

?. A similar kind of “many norm adaptivity” was

recently achieved in [20], which competes with the best fixed Lp norm (or the best fixed norm in any finite

set) using a multi-scale experts algorithm. Our bound in Theorem 5.7 is a factor of
√
d worse,2 but we can

compete with any possible sequence of norms rather than with any fixed one.

Similar regret bounds to our Theorem 5.7 have already appeared in the literature. The first one we are

aware of is the Second Order Perceptron [10] whose mistake bound is exactly of the same form. Recently, a

similar bound was also proven in [27], but this result holds only for domains of the form W = {̊v : 〈gt, v̊〉 ≤
C}, for a known C. Also, Kotłowski [28] proved the same bound under the assumptions that the losses are

of the form `t(wt) = `(yt, wt · xt) and the algorithm receives xt before its prediction. In contrast, we can

deal with unbounded W and arbitrary convex losses through the use of subgradients. Interestingly, all these

algorithms have a O(d2) complexity per update.

5.5 From T to
∑
‖gt‖?

The algorithms in the previous sections obtain regret bounds improve the genericGmax

√
T bound to

√∑T
t=1 ‖gt‖2?

or
√
Gmax

∑T
t=1 ‖gt‖?, so that they adapt to specific statistics of the loss sequence. However, there exist al-

gorithms with less adaptive guarantees that nevertheless improve upon the logarithmic dependence in T . For

example, an algorithm in [35] obtains

RT (ẘ) ≤ O

‖ẘ‖
√√√√T log

(
‖ẘ‖
√
T log2(T + 1)

ε
+ 1

)
+ ε

] (5.4)

In this section we show how to automatically add some more adaptivity to these algorithms. Our argument

is very simple, but seems actually powerful enough to replicate (or even improve upon) some prior literature

with significantly less effort (e.g. [43]). We will continue to assume Gmax = 1 for simplicity, and consider

algorithms that obtain a regret guarantee

RT (ẘ) =

T∑
t=1

gt · (xt − ẘ) ≤ ψT (ẘ)

where ψT (ẘ) depends only on ẘ and T and in particular not on the individual members of the sequence gt.

We will replace this with the more adaptive regret bound

RT (ẘ) ≤ ψG(ẘ)

2The dependence on d is unfortunately unimprovable, as shown by [31].
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where G ≤ 1 +
∑T
t=1 ‖gt‖.

Algorithm 7 non-adaptive to adaptive reduction

Input: Online learning algorithm A.
Get point z1 from A.
k ← 1.
Gk ← 0.
for t = 1 to T do

Plat xt = zk.
Receive subgradient gt.
Gk ← Gk + gt.
if ‖Gk‖? ≥ 1 then

Send Gk/2 to A as kth gradient.
Get point zk+1 from A.
Gk+1 ← 0
k ← k + 1.
tk ← t

end if
end for

Theorem 5.8. SupposeA is an online linear optimization algorithm that satisfies the regret bound RT (ẘ) ≤
ψT (ẘ) such that ψT (ẘ) is an increasing function of T for all ẘ. Then there is an online linear optimization

algorithm that satisfies RT (ẘ) ≤ 2ψ1+‖g‖1:T (ẘ).

The bound is actually likely quite a bit better than ‖g‖1:T , as can be observed from the proof, but in

worst-case it is ‖g‖1:T (in particular it is not ‖g‖21:T ). If we apply it to the bound in (5.4), we obtain an

algorithm that guarantees

RT (ẘ) ≤ O

‖ẘ‖
√√√√√ T∑

t=1

‖gt‖? log

‖ẘ‖
√∑T

t=1 ‖gt‖? log2(
∑T
t=1 ‖gt‖? + 1)

ε
+ 1

+ ε

]

Proof. Let K be the maximum value of k, and let 0 = t1, . . . , tK = T be such that Gk =
∑tk+1

t=tk+1 gt.

Notice that since ‖Gk − gtk+1
‖? ≤ 1 by definition of Gk, we must have ‖Gk‖? ≤ 2 so that ‖Gk/2‖? ≤ 1.
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Therefore by A’s non-adaptive regret guarantee we have

ψK(ẘ) ≥
K∑
k=1

Gk
2
· (zk − ẘ)

=
1

2

K∑
k=1

tk+1∑
t=tk

gt(zk − ẘ)

=
1

2

K∑
k=1

tk+1∑
t=tk

gt(xt − ẘ)

=
1

2
RT (ẘ)

so now all we need do is show that K ≤ 1 +
∑T
t=1 ‖gt‖?:

T∑
t=1

‖gt‖? =

K∑
k=1

tk+1∑
t=tk

‖gt‖?

≥
K∑
k=1

‖
tk+1∑
t=tk

gt‖?

≥ ‖GK‖+

K−1∑
k=1

‖Gk‖

≥ ‖GK‖+

K−1∑
k=1

1

= K − 1

Therefore, since ψK(ẘ) is an increasing function of K, RT (ẘ) ≤ 2ψK(ẘ) ≤ 2ψ1+‖g‖1:T (ẘ).

5.5.1 Lower bound for ‖gt‖2
?

In this section we will show that we cannot replace the
∑T
t=1 ‖gt‖? term in Theorem 5.8 with the more

desirable
∑T
t=1 ‖gt‖2? - at least not without some nontrivial alteration to the result. We accomplish this by

showing that the extra log(
∑T
t=1 ‖gt‖2?) term of our regret bound in Theorem 5.1 is actually necessary. In

particular, it is impossible to obtain a regret bound like

RT (ẘ) ≤ ε+A‖ẘ‖

√√√√1 +

T∑
t=1

‖gt‖2? log(‖ẘ‖T/ε)

Since it is possible to guarantee regret RT (ẘ) ≤ ε + A‖ẘ‖
√
T log(‖ẘ‖T/ε), this shows that we cannot

replace all instances of T with
∑T
t=1 ‖gt‖2? in a black-box manner.
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Theorem 5.9. Suppose A is one-dimensional online linear optimization algorithm that guarantees origin-

regret ε(t) on 1-Lipschitz losses at time t for where ε is non-decreasing and ε(t) is O(td) for some d. Then

for any k > 0 and any 1/2 < γ ≤ 1 and any τ > 0, there exists a T1 such that for all T > T1 there is an

adversarial strategy picking gt ∈ R in response to the learner’s output wt ∈ R such that there exists ẘ ∈ R
with

RT (ẘ) =

T∑
t=1

gtwt − gtu > k|u| logγ(T |ẘ|+ 1)

√
1 + |g|2(γ+τ)

1:T + ε(T )

This Theorem rules out bounds with Õ
(√∑T

t=1 ‖gt‖2?
)

regret unless there is a term that is at least

O(log(T )) rather than the O(
√

log(T )) bound we can get using Theorem 5.8. Observe that there are rela-

tively mild conditions on ε so that one cannot dodge these lower bounds by moving some small T -dependence

into ε.

Proof. Without loss of generality, assume w1 = 0. Define the “reward” at time t by rt = −
∑t
t′=1 gt′wt.

Observe that the regret can be written as

RT (ẘ) = −rT − g1:T ẘ

Therefore the condition that A ensures Rt(0) ≤ ε(t) for all t requires that rt ≥ −ε(t) for all t.

Suppose for contradiction that there is some t ≤ T and a sequence g1, . . . , gt−1 such that wt > rt−1 +

ε(T ). Consider the adversary that gives g1, . . . , gt−1 for the first t − 1 rounds, then gives gt = 1 and

gt+1 = gt+2 = · · · = gT = 0. Then we have rT = rt = rt−1 − wt < −ε(T ) < −ε(t), which contradicts

our assumption about A. Therefore wt ≤ rt−1 + ε(T ) for all t on all loss sequences of length at most T .

With this in hand, we now make an assumption about T1 that will come in handy later. Choose T1 large

enough that for all T > T1,

log(2ε(T )
√
T ) + (T − 1) log

(
1 +

1√
T

)
+ 1 <

( √
T

k
√

1 + T 1−γ−τ

)1/γ

(5.5)

2ε(T )

(
1 +

1√
T

)T−1√
T ≥ 1 (5.6)

This is possible because ε(T ) is nondecreasing and grows at most polynomially in T , and
[
(T − 1) log

(
1 + 1√

T

)]γ
≤

T γ/2 =
√
T√

T 1−γ ≤
1
2

( √
T

2k
√

1+T 1−γ−τ

)
for sufficiently large T for any τ > 0.

Consider the loss sequence gt = − 1√
T

for all t ≤ T . Then we have rt = rt−1 + xt√
T

. Since wt ≤
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rt−1 + ε(T ), we have

rt ≤ rt−1

(
1 +

1√
T

)
+
ε(T )√
T

(rt + ε(T )) ≤ (rt−1 + ε(T ))

(
1 +

1√
T

)
rT ≤ ε(T )

(
1 +

1√
T

)T−1

− ε(T )

where in the last line we have unrolled the recursion and observed that r1 = 0.

Now consider ẘ = 2ε(T )

(
1+ 1√

T

)T−1

√
T

. Then

RT (ẘ) = −rT − g1:T ẘ

≥ ε(T )− ε(T )

(
1 +

1√
T

)T−1

+
√
Tẘ

= ε(T ) + ε(T )

(
1 +

1√
T

)T−1

= ε(T ) +

√
T

2
ẘ

From our choice of ẘ and our assumptions on T1, we compute:

log(Tu+ 1) ≤ log(Tu) + 1 because Tẘ ≥ 1 by (5.6)

= log(2ε
√
T ) + (T − 1) log

(
1 +

1√
T

)
+ 1

<

( √
T

2k
√

1 + T 1−γ−τ

)1/γ

by (5.5)

√
T

2
> k

√
1 + T 1−γ−τ logγ(Tẘ + 1)

Combining this calculation with our regret bound we have:

RT (ẘ) ≥ ε(T ) +

√
T

2
ẘ

> ε(T ) + k
√

1 + T 1−γ−τ ẘ logγ(Tẘ + 1)

Finally, observe that 1 + |g|2(γ+τ)
1:T = 1 + T 1−γ−τ so that we can conclude

RT (u) > ε(T ) + k
√

1 + T 1−γ−τ ẘ logγ(Tẘ + 1)

≥ ε(T ) + kẘ logγ(Tu+ 1)

√
1 + |g|2(γ+τ)

1:T
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as desired.

5.6 Conclusions

In this chapter we introduced a series of reductions showing that parameter-free online learning algorithms

can be obtained from online exp-concave optimization algorithms, that optimization in a vector space with

any norm can be obtained from 1D optimization, and than online learning with constraints is no harder than

optimization without constraints. Our reductions not only result in simpler arguments in many applications,

they also provide often better algorithms in terms of regret bounds or runtime.

We also remark that the dependence of our regret bounds on the term
√

1 +
∑T
t=1 ‖gt‖2? whenGmax ≤ 1

suggests that the assumption of a known bound on Gmax is perhaps a little less bad it might appear. If we

re-scale the losses be the bound Gmax, then the regert bound depends on the term
√
G2

max +
∑T
t=1 ‖gt‖2? ≤

Gmax+
√
‖gt‖2?. Thus if our chosen bound forGmax is too conservative, it will actually have a subasymptotic

affect on the regret bound. On the other hand, a conservative bound on ‖ẘ‖ would have the effect of linearly

scaling the regret bound.

In the next chapters we will apply these reductions to design new algorithms and regret bounds.



Appendix

This appendix is organized as follows:

1. In Section 5.A we collect some background information about Banach spaces, their duals, and other

properties.

2. In Section 5.B we provide an analysis of the ONS algorithm in Banach spaces that is useful for proving

Theorem 5.7.

3. In Section 5.C we apply this analysis of ONS in Banach spaces to prove Theorem 5.7, and provide the

missing Fenchel conjugate calculation required to prove Theorem 5.1, which are our reductions from

parameter-free online learning to Exp-concave optimization.

4. In Section 5.D we prove Proposition 5.5, used in our reduction from constrained optimization to un-

constrained optimization in Section 5.3. In this section we also prove Theorem 5.6, which simplifies

computing subgradients of SW in many cases.

5.A Banach Spaces

Given any vector space V , there is a natural injection V → V ?? given by x 7→ 〈·, x〉. When this injection is

an isomorphism of Banach spaces, then the space V is called reflexive. All finite-dimensional Banach spaces

are reflexive.

Given any linear map of Banach spaces T : X → Y , we define the adjoint map T ? : Y ? → X? by

T ?(y?)(x) = 〈y?, T (x)〉. T ? has the property (by definition) that 〈y?, T (x)〉 = 〈T ?(y?), x〉. As a special

case, if B is a reflexive Banach space and T : B → B?, then we can use the natural identification between

B?? and B to view T ? as T ? : B → B?. Thus, in this case it is possible to have T = T ?, in which case we

call T self-adjoint.

Definition 5.10. We define a Banach space B as (p,D) uniformly convex if [47]:

‖x+ y‖p + ‖x− y‖p ≥ 2‖x‖p + 2D‖y‖p, ∀x, y ∈ B . (5.7)

86
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From this definition, we can see that if B is (2, D) uniformly convex, then ‖ · ‖2 is a D-strongly convex

function with respect to ‖ · ‖:

Lemma 5.11. Let f(x) a convex function that satisfies

f

(
x+ y

2

)
≤ 1

2
f(x) +

1

2
f(y)− D

2p
‖x− y‖p .

Then, f satisfies f(x+ δ) ≥ f(x) + 〈g, δ〉+D ‖δ‖
p

p for any subgradient g ∈ ∂f(x). In particular for p = 2,

f is D strongly convex with respect to ‖ · ‖.

Proof. Set y = x + 2δ for some arbitrary δ. Let g ∈ X? be an arbitrary subgradient of f at x. Let

Rx(τ) = f(x+ τ)− (f(x) + g(τ)). Then

f(x) + g(δ) ≤ f
(
x+ y

2

)
≤ f(x) + f(x+ 2δ)

2
− D‖2δ‖p

2p
= f(x) + g(δ) +

Rx(2δ)

2
− D‖2δ‖p

2p
,

that implies D
p ‖2δ‖

p ≤ Rx(2δ). So that f(x + τ) = f(x) + g(τ) + Rx(τ) ≥ f(x) + g(τ) + D
p ‖τ‖

p as

desired.

Lemma 5.12. Let B be a (2, D) uniformly convex Banach space, then f(x) = 1
2‖x‖

2 is D-strongly convex.

Proof. Let x = u + v and y = u − v. Then, from the definition of (2, D) uniformly convex Banach space,

we have

2‖u+ v‖2 + 2D‖u− v‖2 ≤ 4‖u‖2 + 4‖v‖2,

that is
1

2

∥∥∥∥u+ v

2

∥∥∥∥2

≤ 1

2
‖u‖2 +

1

2
‖v‖2 − D

4
‖u− v‖2 .

Using Lemma 5.11, we have the stated bound.

Any Hilbert space is (2, 1)-strongly convex. As a slightly more exotic example, Rd equipped with the

p-norm is (2, p− 1) strongly-convex for p ∈ (1, 2].

The notion of uniform convexity is dual to the notion of uniform smoothness:

Definition 5.13. A Banach space V is (p,D) uniformly smooth if

‖x+ y‖p + ‖x− y‖p ≤ 2‖x‖p + 2D‖y‖p, ∀x, y ∈ B .

It turns out that if B is (q,D)-uniformly convex, then there exists some C such that B? is (p, C)-

uniformly smooth with 1
p + 1

q = 1 (see [48] chapter 6 and [49] chapter 4).

Similar to with uniform convexity, with this definition we can observe that if B is a (2, D/4)-uniformly

smooth Banach space then ‖ · ‖2 is D-smooth with respect to ‖ · ‖.
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Lemma 5.14. Let f(x) a convex function that satisfies

f(x+ y)

2
+
f(x− y)

2
≤ f(x) +D‖y‖p .

Then, f satisfies f(x+δ) ≤ f(x)+ 〈g, δ〉+2D ‖δ‖
p

p for any subgradient g ∈ ∂f(x). In particular for p = 2,

f is 4D smooth with respect to ‖ · ‖.

Proof. Set y = δ for some arbitrary δ. Let g ∈ ∂f(x) be an arbitrary subgradient of f at x.

f(x+ δ) + f(x− δ) ≤ 2f(x) + 2D‖δ‖p

f(x+ δ) ≤ 2f(x)− f(x− δ) + 2D‖δ‖p

≤ 2f(x)− f(x)− f(x) + 〈g, δ〉+ 2D‖δ‖p

= f(x) + 〈g, δ〉+ 2D‖δ‖p

that implies D
p ‖2δ‖

p ≤ Rx(2δ). So that f(x + τ) = f(x) + g(τ) + Rx(τ) ≥ f(x) + g(τ) + D
p ‖τ‖

p as

desired.

Finally, we discuss the notion of Frechet differentiability, which is a simple generalization of the standard

notion familiar from basic calculus.

Definition 5.15. Given a real Banach space B, a function f : B → R is Frechet differentiable at x ∈ B if

there exists a g ∈ B? such that

lim
δ→0

|f(x+ δ)− f(x)− 〈g, δ〉|
‖δ‖

= 0

the value g is called the Frechet derivative, denoted∇f(x).

This definition maintains all the important familiar properties, including the chain rule and the fact that

∇f(x) ∈ ∂f(x) for any convex f .

5.B Proof of the regret bound of ONS in Banach spaces

First, we need some additional facts about self-adjoint operators. These are straight-forward properties in

Hilbert spaces, but may be less familiar in Banach spaces so we present them below for completeness.

Proposition 5.16. Suppose X and Y are Banach spaces and T : X → Y is invertible. Then, T ? is invertible

and (T−1)? = (T ?)−1.

Proof. Let y? ∈ Y ?. Let x ∈ X . Recall that by definition 〈T ?(y?), x〉 = 〈y?, T (x)〉. Then we have

〈(T−1)?(T ?(y?)), x〉 = 〈T ?(y?), T−1(x)〉 = 〈y?, x〉,
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Algorithm 8 ONS in Banach Spaces

Require: Real Banach space B, convex subset S ⊂ B, initial linear operator L : B → B?, τ, β > 0
1: Initialize: v1 = 0 ∈ S
2: for t = 1 to T do
3: Play vt
4: Receive zt ∈ B?
5: Set At(x) = τL(x) +

∑t
i=1 zi〈zi, x〉

6: vt+1 = ΠAt
S (vt − 1

βA
−1
t (zt)), where ΠAt

S (x) = argminy∈S 〈At(y − x), y − x〉
7: end for

where we used the definition of adjoint twice. Therefore, (T−1)?(T ?(y?)) = y? and so (T−1)? = (T ?)−1.

Proposition 5.17. Suppose B is a reflexive Banach space and T : B → B? is such that

T (x) =

N∑
i=1

〈bi, x〉bi

for some vectors bi ∈ B?. Then T ? = T .

Proof. Let g, f ∈ B. Since B is reflexive, g corresponds to the function 〈·, g〉 ∈ B??. Now, we compute:

T ?(g)(f) = 〈T (f), g〉 =

N∑
i=1

〈bi, f〉〈bi, g〉 = 〈T (g), f〉 = T (g)(f) .

Proposition 5.18. Suppose τ > 0, B is a d-dimensional real Banach space, b1, . . . , bd are a basis for B?

and g1, . . . , gT are elements of B?. Then, A : B → B? defined by A(x) = τ
∑d
i=1〈bi, x〉bi +

∑T
t=1〈gt, x〉gt

is invertible and self-adjoint, and 〈Ax, x〉 > 0 for all x 6= 0.

Proof. First, A is self-adjoint by Proposition 5.17.

Next, we showA is invertible. Suppose otherwise. Then, sinceB andB? are both d-dimensional,Amust

have a non-trivial kernel element x. Therefore,

0 = 〈Ax, x〉 = τ

d∑
i=1

〈bi, x〉2 +

T∑
t=1

〈gt, x〉2, (5.8)

so that 〈bi, x〉 = 0 for all i. Since the bi form a basis for B?, this implies 〈y, x〉 = 0 for all y ∈ B?, which

implies x = 0. Therefore, A has no kernel and so must be invertible.

Finally, observe that since (5.8) holds for any x, we must have 〈Ax, x〉 > 0 if x 6= 0.

Now we state the ONS algorithm in Banach spaces and prove its regret guarantee:
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Theorem 5.19. Using the notation of Algorithm 8, suppose L(x) =
∑d
i=1〈bi, x〉 for some basis bi ∈ B? and

that B is d-dimensional. Then for any v̊ ∈ S,

T∑
t=1

(
〈zt, vt − v̊〉 −

β

2
〈zt, vt − v̊〉2

)
≤ βτ

2
〈L(̊v), v̊〉+

2

β

T∑
t=1

〈zt, A−1
t (zt)〉 .

Proof. First, observe by Proposition 5.18 that At is invertible and self-adjoint for all t.

Now, define xt+1 = vt − 1
βA
−1
t (zt) so that vt+1 = ΠAt

S (xt+1). Then, we have

xt+1 − v̊ = vt − v̊ −
1

β
A−1
t (zt),

that implies

At(xt+1 − v̊) = At(vt − v̊ −
1

β
A−1
t (zt)) = At(vt − v̊)− 1

β
zt,

and

〈At(xt+1 − v̊), xt+1 − v̊〉

= 〈At(vt − v̊)− 1

β
zt, xt+1 − v̊〉

= 〈At(vt − v̊), xt+1 − v̊〉 −
1

β
〈zt, xt+1 − v̊〉

= 〈At(vt − v̊), xt+1 − v̊〉 −
1

β
〈zt, vt − v̊ −

1

β
A−1
t (zt)〉

= 〈At(vt − v̊), xt+1 − v̊〉 −
1

β
〈zt, vt − v̊〉+

1

β2
〈zt, A−1

t (zt)〉

= 〈At(vt − v̊), vt − v̊ −
1

β
A−1
t (zt)〉 −

1

β
〈zt, vt − v̊〉+

1

β2
〈zt, A−1

t (zt)〉

= 〈At(vt − v̊), vt − v̊〉 −
1

β
〈At(vt − v̊), A−1

t (zt)〉 −
1

β
〈zt, vt − v̊〉+

1

β2
〈zt, A−1

t (zt)〉

= 〈At(vt − v̊), vt − v̊〉 −
2

β
〈zt, vt − v̊〉+

1

β2
〈zt, A−1

t (zt)〉,

where in the last line we used 〈At(vt − v̊), A−1
t (zt)〉 = 〈(vt − v̊), A?tA

−1
t (zt)〉 and A?t = At. We now use

the Lemma 8 from [24], extended to Banach spaces thanks to the last statement of Proposition 5.18, to have

〈At(xt+1 − v̊), xt+1 − v̊〉 ≥ 〈At(vt+1 − v̊), vt+1 − v̊〉

to have

〈zt, vt − v̊〉 ≤
β

2
〈At(vt − v̊), vt − v̊〉 −

β

2
〈At(vt+1 − v̊), vt+1 − v̊〉+

2

β
〈zt, A−1

t (zt)〉 .
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Summing over t = 1, · · · , T , we have

T∑
t=1

〈zt, vt − v̊〉 ≤
β

2
〈A1(v1 − v̊), v1 − v̊〉+

β

2

T∑
t=2

〈At(vt − v̊)−At−1(vt − v̊), vt − v̊〉

− β

2
〈AT (vT+1 − v̊), vT+1 − v̊〉+

2

β

T∑
t=1

〈zt, A−1
t (zt)〉

≤ β

2
〈A1(v1 − v̊), v1 − v̊〉+

β

2

T∑
t=2

〈zt〈zt, vt − v̊〉, vt − v̊〉+
2

β

T∑
t=1

〈zt, A−1
t (zt)〉

=
β

2
〈τL(̊v), v̊〉+

β

2

T∑
t=1

〈zt, vt − v̊〉2 +
2

β

T∑
t=1

〈zt, A−1
t (zt)〉 .

It remains to choose L properly and analyze the sum
∑T
t=1〈zt, A

−1
t (zt)〉 In order to do this, we introduce

the concept of an Auerbach basis (e.g. see [22] Theorem 1.16):

Theorem 5.20. Let B be a d-dimensional Banach space. Then there exists a basis of b1, . . . , bd of B and

a basis b1, . . . , bd of B? such that ‖bi‖ = ‖bi‖? = 1 for all i and 〈bi, bj〉 = δij . Any bases (bi) and (bi)

satisfying these conditions is called an Auerbach basis.

We will use an Auerbach basis to define L, and also to provide a coordinate system that makes it easier

to analyze the sum
∑T
t=1〈zt, A

−1
t (zt)〉.

Theorem 5.21. Suppose B is d-dimensional. Let (bi) and (bi) be an Auerbach basis for B. Set L(x) =∑d
i=1〈bi, x〉bi. Define At as in Algorithm 6. Then, for any v̊ ∈ S, the following holds

βτ

2
〈L(̊v), v̊〉+

2

β

T∑
t=1

〈zt, A−1
t (zt)〉 ≤

βτ

2
d‖̊v‖2 +

2

β
d ln

(∑T
t=1 ‖zt‖2?
τ

+ 1

)
.

Proof. First, we show that β2 〈L(̊v), v̊〉 ≤ βd
2 ‖̊v‖

2. To see this, observe that for any x ∈ B,

〈L(x), x〉 =

d∑
i=1

〈bi, x〉2 ≤
d∑
i=1

‖bi‖2?‖x‖2 ≤ d‖x‖2 .

Now, we characterize the sum part of the bound. The basic idea is to use the Auerbach basis to identify

B with Rd (equivalently, we view 〈L(x), x〉 as an inner product on B). We use this identification to translate

all quantities in B and B? to vectors in Rd, and observe that the 2-norm of any gt in Rd is at most d. Then

we use analysis of the same sum terms in the classical analysis of ONS in Rd [24] to prove the bound.

We spell these identifications explicitly for clarity. Define a map F : B → Rd by

F (x) = (〈b1, x〉, . . . , 〈bd, x〉) .
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We have an associated map F ? : B? → Rd given by

F ?(x?) = (〈x?, b1〉, . . . , 〈x?, bd〉) .

Since 〈bi, bj〉 = δij , these maps respect the action of dual vectors in B?. That is,

〈x, y〉 = F ?(x) · F (y) .

Further, since each ‖bi‖ = ‖bi‖? = 1, we have

‖F (x)‖2 =

d∑
i=1

〈bi, x〉2 ≤ d‖x‖2 .

and

‖F ?(x)‖2 =

d∑
i=1

〈x, bi〉2 ≤ d‖x‖2? .

where the norm in Rd is the 2-norm. To make the correspondence notation cleaner, we write x = F (x) for

x ∈ B and y = F ?(y) for y ∈ B?. xi indicates the ith coordinate of x.

Given any linear map M : B → B? (which we denote by M ∈ L(B,B?)), there is an associated map

M : Rd → Rd given by

M = F ?MF−1 .

Further, when written as a matrix, the ijth element of M is

M ij = (F ?MF−1ej) · ei,

where ej represents the jth standard basis element in Rd. A symmetric statement holds for any linear map

B? → B, in which M = FM(F ?)−1.

These maps all commute properly: Mx = Mx for any M ∈ L(B,B?) and x ∈ B, and similarly

Mx = Mx for any M ∈ L(B?, B) and x ∈ B?. It follows that M
−1

= M−1 for any M as well.

Now, let’s calculate Lij :

Lij = (F ?LF−1ej) · ei = 〈Lbj , bi〉 = δij ,

so that the matrix L is the identity.
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Finally, if Mg : B → B? is the map Mg(x) = 〈g, x〉g, then a simple calculation shows

Mg = ggT .

With these details described, recall that we are trying to bound the sum

T∑
t=1

〈zt, A−1
t (zt)〉 .

We transfer to Rd coordinates:

T∑
t=1

〈zt, A−1
t (zt)〉 =

T∑
t=1

zt ·At
−1
zt .

We have ‖zn‖ ≤
√
d‖zn‖? and

At = τL+

t∑
t=1

ztzt
T ,

so that by [24] Lemma 11,

T∑
t=1

zt ·At
−1
zt ≤ ln

|AT |
|A0|

≤ d ln

(∑T
t=1 ‖zt‖2

dτ
+ 1

)
≤ d ln

(∑T
t=1 ‖zt‖2?
τ

+ 1

)
,

where in the second inequality we used the fact that the determinant is maximized when all the eigenvalues

are equal to
∑T
t=1 ‖zt‖

2

d .

For completeness, we also state the regret bound and the setting of the parameters β and τ to obtain a

regret bound for exp-concave functions. Note that we use a different settings in Algorithms 2 and 6, tailored

to our specific setting.

Theorem 5.22. Suppose we run Algorithm 6 on α exp-concave losses. Let D be the diameter of the domain

S and ‖∇f(x)‖? ≤ Z for all the x in S. Then set β = 1
2 min

(
1

4ZD , α
)

and τ = 1
β2D2 . Then

RT (̊v) ≤ 4d

(
ZD +

1

α

)
(1 + ln(T + 1)) .

Proof. First, observe that classic analysis of α exp-concave functions [24, Lemma 3] shows that for any

x, y ∈ S,

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
β

2
〈∇f(y), x− y〉2 .

(Note that although the original proof is stated in Rd, the exact same argument applies in a Banach space)
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Therefore, by Theorems 5.19 and 5.21, we have

RT (u) ≤ βτ

2
d‖u‖2 +

2

β
d ln(Z2T/τ + 1) .

Substitute our values for β and τ to conclude

RT (u) ≤ d

2β

(
1 + ln(Z2Tβ2D2 + 1)

)
≤ 4d

(
ZD +

1

α

)
(1 + ln(T + 1)),

where in the last line we used 1
β ≤ 8(ZD + 1/α).

5.C Proofs of Theorems 5.1 and 5.7

In order to prove Theorem 5.1 and 5.7, we first need some technical lemmas. In particular, first we show in

Lemma 5.25 that ONS gives us a logarithmic regret against the functions `t(β) = ln(1 + 〈gt, β〉). Then, we

will link the wealth to the regret with respect to an arbitrary unitary vector thanks to Theorem 5.29.

Lemma 5.23. For −1 < x ≤ 2, we have

ln(1 + x) ≤ x− 2− ln(3)

4
x2 .

Lemma 5.24. Define `t(v) = − ln(1− 〈gt, v〉). Let ‖̊v‖, ‖v‖ ≤ 1
2 and ‖gt‖? ≤ 1. Then

`t(v)− `t(̊v) ≤ 〈∇`t(v), v − v̊〉 − 2− ln(3)

2

1

2
〈∇`t(v), v − v̊〉2 .

Proof. We have

ln(1− 〈gt, v̊〉) = ln(1− 〈gt, v〉+ 〈gt, v − v̊〉) = ln(1− 〈gt, v〉) + ln

(
1 +
〈gt, v − v̊〉
1− 〈gt, v〉

)
.

Now, observe that since 1− 〈gt, v̊〉 ≥ 0 and 1− 〈gt, v〉 ≥ 0, 1 + 〈gt,v−v̊〉
1−〈gt,v〉 ≥ 0 as well so that 〈gt,v−v̊〉1−〈gt,v〉 ≥ −1.

Further, since ‖̊v − v‖ ≤ 1 and 1− 〈gt, v〉 ≥ 1/2, 〈gt,v−v̊〉1−〈gt,v〉 ≤ 2. Therefore, by Lemma 5.23 we have

ln(1− 〈gt, v̊〉) ≤ ln(1− 〈gt, v〉) +
〈gt, v − v̊〉
1− 〈gt, v〉

− 2− ln(3)

4

〈gt, v − v̊〉2

(1− 〈gt, v〉)2
.

Using the fact that∇`t(v) = gt
1−〈gt,v〉 finishes the proof.

Lemma 5.25. Define S = {v ∈ B : ‖v‖ ≤ 1
2} and `t(v) : S → R as `t(v) = − ln(1 − 〈gt, v〉), where
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‖gt‖? ≤ 1. If we run ONS in Algorithm 6 with β = 2−ln(3)
2 , τ = 1, and S = {v : ‖v‖ ≤ 1

2}, then

T∑
t=1

`t(vt)− `t(̊v) ≤ d

(
1

17
+ 4.5 ln

(
1 + 4

T∑
t=1

‖gt‖2?

))
.

Proof. From Lemma 5.24, we have

T∑
t=1

`t(vt)− `t(̊v) ≤
T∑
t=1

(
〈∇`t(vt), vt − v̊〉 −

β

2
〈∇`t(vt), vt − v̊〉2

)
.

So, using Lemma 5.19 we have

T∑
t=1

(
〈∇`t(vt), vt − v̊〉 −

β

2
〈∇`t(vt), vt − v̊〉2

)
≤ β

2
〈L(̊v), v̊〉+

2

β

T∑
t=1

〈zt, A−1
t (zt)〉,

where zt = ∇`t(vt). Now, use Theorem 5.21 so that

β

2
〈L(̊v), v̊〉+

2

β

T∑
t=1

〈zt, A−1
t (zt)〉 ≤

dβ

8
+

2d

β
ln

(
1 +

T∑
t=1

‖zt‖2?

)
,

where we have used ‖̊v‖ ≤ 1/2. Then observe that ‖zt‖2? =
‖gt‖2?

(1+〈gt,βt〉)2 ≤ 4‖gt‖2? so that ln(1 +∑T
t=1 ‖zt‖2?) ≤ ln(1 + 4

∑T
t=1 ‖gt‖2?). Finally, substitute the specified value of β and numerically eval-

uate to conclude the bound.

Now, we collect some Fenchel conjugate calculations that allow us to convert our wealth lower-bounds

into regret upper-bounds:

Lemma 5.26. Let f(x) = a exp(b|x|), where a, b > 0. Then

f?(θ) =


|θ|
b

(
ln |θ|ab − 1

)
, |θ|

ab > 1

−a, otherwise.
≤ |θ|

b

(
ln
|θ|
ab
− 1

)
.

Lemma 5.27. Let f(x) = a exp(b x2

|x|+c ), where a, b > 0 and c ≥ 0. Then

f?(θ) ≤ |θ|max

(
2

b

(
ln

2|θ|
ab
− 1

)
,

√
c

b
ln

(
cθ2

a2b
+ 1

)
− a

)
.

Proof. By definition we have

f?(θ) = sup
x

θx− f(x) .

It is easy to see that the sup cannot attained at infinity, hence we can safely assume that it is attained at

x? ∈ R. We now do a case analysis, based on x?.
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Case |x?| ≤ c. In this case, we have that f(x?) ≥ a exp(bx
2

2c ), so

f?(θ) = θx? − f(x?) ≤ θx? − a exp

(
b
(x?)2

2c

)
≤ sup

x
θx− a exp

(
b
x2

2c

)
≤ |θ|

√
c

b
ln

(
cθ2

a2b
+ 1

)
− a,

where the last inequality is from Lemma 18 in [40].

Case |x?| > c. In this case, we have that f(x?) ≥ a exp
(
b (x?)2

2|x?|

)
= a exp

(
b
2 |x

?|
)
, so

f?(θ) = θx? − f(x?) ≤ θx? − a exp

(
b

2
|x?|

)
≤ sup

x
θx− a exp

(
b

2
|x|
)
≤ 2|θ|

b

(
ln

2|θ|
ab
− 1

)
,

where the last inequality is from Lemma 5.26.

Considering the max over the two cases gives the stated bound.

Theorem 5.28. Let u be an arbitrary unit vector and ‖gt‖? ≤ 1 for t = 1, · · · , T . Then

sup
‖v‖≤ 1

2

T∑
t=1

ln(1− 〈gt, v〉) ≥
1

4

〈
∑T
t=1 gt, u〉2∑T

t=1〈gt, u〉2 +
∣∣∣〈∑T

t=1 gt, u
〉∣∣∣ .

Proof. Recall that ln(1 + x) ≥ x− x2 for |x| ≤ 1/2. Then, we compute

sup
‖v‖≤1/2

T∑
t=1

ln(1− 〈gt, v〉) ≥ sup
‖v‖≤1/2

T∑
t=1

(
−〈gt, v〉 − 〈gt, v〉2

)
= sup
‖v‖≤1/2

−

〈
T∑
t=1

gt, v

〉
−

T∑
t=1

〈gt, v〉2 .

Choose v = u
2

〈∑T
t=1 gt,u〉∑T

t=1〈gt,u〉2+|〈∑T
t=1 gt,u〉|

. Then, clearly ‖v‖ ≤ 1
2 . Thus, we have

sup
‖v‖≤1/2

T∑
t=1

ln(1 + 〈gt, v〉) ≥ sup
‖v‖≤1/2

−

〈
T∑
t=1

gt, v

〉
−

T∑
t=1

〈gt, v〉2

≥ 1

2

〈
∑T
t=1 gt, u〉2∑T

t=1〈gt, u〉2 +
∣∣∣〈∑T

t=1 gt, u
〉∣∣∣ − 〈

∑T
t=1 gt, u〉2

4
(∑T

t=1〈gt, u〉2 +
∣∣∣〈∑T

t=1 gt, u
〉∣∣∣)2

T∑
t=1

〈gt, u〉2

≥ 1

4

〈
∑T
t=1 gt, u〉2∑T

t=1〈gt, u〉2 +
∣∣∣〈∑T

t=1 gt, u
〉∣∣∣ .
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Lemma 5.29. Let u be an arbitrary unit vector in B and t > 0. Then, using the Algorithm 6, we have

RT (tu) ≤ ε+ tmax

d
2
− 8 + 8 ln

8t
(

4
∑T
t=1 ‖gt‖2? + 1

)4.5d

ε
,

2

√√√√√ T∑
t=1

〈gt, u〉2 ln

5t2

ε2
exp

(
d

17

)(
4

T∑
t=1

‖gt‖2 + 1

)9d+1

+ 1


 .

Proof. Let’s compute a bound on our wealth, WealthT . We have that

Wealtht = Wealtht−1 − 〈gt, wt〉 = Wealtht−1(1− 〈gt, vt〉) = ε

T∏
t=1

(1− 〈gt, vt〉),

and taking the logarithm we have

ln Wealtht = ln ε+

T∑
t=1

ln(1− 〈gt, vt〉) .

Hence, using Lemma 5.25, we have

ln Wealtht ≥ ln ε+ max
‖v‖≤ 1

2

T∑
t=1

ln(1 + 〈gt, v〉)− d

(
1

17
+ 4.5 ln

(
1 +

T∑
t=1

4‖gt‖2?

))
.

Using Theorem 5.28, we have

WealthT ≥
ε

exp
[
d
(

1
17 + 4.5 ln

(
1 + 4

∑T
t=1 ‖gt‖2?

))] exp

1

4

〈
∑T
t=1 gt, u〉2∑T

t=1〈gt, u〉2 +
∣∣∣〈∑T

t=1 gt, u
〉∣∣∣
 .

Defining

f(x) =
ε

exp
[
d
(

1
17 + 4.5 ln

(
1 + 4

∑T
t=1 ‖gt‖2?

))] exp

[
1

4

x2∑T
t=1〈gt, u〉2 + |x|

]
,
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we have

RT (tu) = ε−WealthT − t

〈
T∑
t=1

gt, u

〉

≤ ε− t

〈
T∑
t=1

gt, u

〉
− f

(〈
T∑
t=1

gt, u

〉)
≤ ε+ f?(−t)

≤ ε+ tmax

[
8

(
ln

8t

ε
+

d

17
+ 4.5d ln

(
4

T∑
t=1

‖gt‖2? + 1

)
− 1

)
,√√√√√4

T∑
t=1

〈gt, u〉2 ln

5t2

ε2
exp

(
d

17

)(
4

T∑
t=1

‖gt‖2 + 1

)9d T∑
t=1

〈gt, u〉2 + 1




≤ ε+ tmax

d
2
− 8 + 8 ln

8t
(

4
∑T
t=1 ‖gt‖2? + 1

)4.5d

ε
,

2

√√√√√ T∑
t=1

〈gt, u〉2 ln

5t2

ε2
exp

(
d

17

)(
4

T∑
t=1

‖gt‖2 + 1

)9d+1

+ 1


 ,

where we have used the calculation of Fenchel conjugate of f from Lemma 5.27. Then observe that exp(d/17) ≤
exp((9d+ 1)/153) ≤ 29d+1 to conclude:

RT (tu) ≤ ε+ tmax

d
2
− 8 + 8 ln

8t
(

4
∑T
t=1 ‖gt‖2? + 1

)4.5d

ε
,

2

√√√√√ T∑
t=1

〈gt, u〉2 ln

5t2

ε2

(
8

T∑
t=1

‖gt‖2 + 2

)9d+1

+ 1


 .

Proof of Theorem 5.7. Given some ẘ, set u = ẘ
‖ẘ‖ and t = ‖ẘ‖. Then observe that t2

∑T
t=1〈gt, u〉2 =∑T

t=1〈gt, ẘ〉2 and apply the previous Lemma 5.29 to conclude the desired result.

5.D Proof of Proposition 5.5 and Theorem 5.6

We restate Proposition 5.5 below:

Proposition 5.5. SW is convex and 1-Lipschitz for any closed convex set W in a reflexive Banach space B.



CHAPTER 5. REDUCTIONS FOR PARAMETER-FREE ONLINE LEARNING 99

Proof. Let x, y ∈ B, t ∈ [0, 1], x′ ∈ ΠW (x), and y′ ∈ ΠW (y). Then

SW (tx+ (1− t)y) = min
d∈W
‖tx+ (1− t)y − d‖ ≤ ‖tx+ (1− t)y − tx′ − (1− t)y′‖

= ‖t(x− x′) + (1− t)(y − y′)‖ ≤ t‖x− x′‖+ (1− t)‖y − y′‖

= tSW (x) + (1− t)SW (y) .

For the Lipschitzness, let x ∈ B and x′ ∈ ΠW (x), and observe that

SW (x+ δ) = inf
d∈W
‖x+ δ − d‖ ≤ ‖x+ δ − x′‖ ≤ SW (x) + ‖δ‖ .

Similarly, let x ∈ B, δ such that x+ δ ∈ B and x′ ∈ ΠW (x+ δ), then

SW (x) = min
d∈W
‖x− d‖ ≤ ‖x+ δ − δ − x′‖ ≤ SW (x+ δ) + ‖δ‖ .

So that |SW (x)− SW (x+ δ)| ≤ ‖δ‖.

Now we restate and prove Theorem 5.6:

Theorem 5.6. LetB be a reflexive Banach space such that for every 0 6= b ∈ B, there is a unique dual vector

b? such that ‖b?‖? = 1 and 〈b?, b〉 = ‖b‖. Let W ⊂ B a closed convex set. Given x ∈ B and x /∈ W , let

p ∈ ΠW (x). Then {(x− p)?} = ∂SW (x).

Proof. Let x′ = x+p
2 . Then clearly SW (x′) ≤ ‖x′ − p‖ = ‖x−p‖

2 = SW (x) − ‖x − x′‖. Since SW is

1-Lipschitz, SW (x′) ≥ SW (x)− ‖x− x′‖ and so SW (x′) = SW (x)− ‖x− x′‖.
Suppose g ∈ ∂SW (x). Then 〈g, x′ − x〉 + SW (x) ≤ SW (x′) = SW (x) − ‖x − x′‖. Therefore,

〈g, x′−x〉 ≤ −‖x−x′‖. Since ‖g‖? ≤ 1, we must have ‖g‖? = 1 and 〈g, x−p〉 = ‖x−p‖. By assumption,

this uniquely specifies the vector (x− p)?. Since ∂SW is not the empty set, {(x− p)?} = ∂SW (x).



Chapter 6

Other Applications

In this chapter we introduce two applications of our reductions in Chapter 5. First, we consider the multi-

scale experts problem, which is an optimization problem over the probability simplex and so makes use of

our unconstrained-to-constrained reduction. Then we return to the unconstrained setting and demonstrate that

a simple coordinate-wise update scheme can produce an algorithm that adapts to sparsity in either ẘ of gt
while maintaining nearly dimension-free regret when neither quantity is sparse.

6.1 Reduction for Multi-Scale Experts

In this section, we apply our reductions to the multi-scale experts problem considered in [20; 7]. Our al-

gorithm improves upon both prior algorithms: the approach of [7] has a mildly sub-optimal dependence on

the prior distribution, while the approach of [20] takes time O(T ) per update, resulting in a quadratic total

runtime. Our algorithm matches the regret bound of [20] while running in the same time complexity as online

gradient descent.

The multi-scale experts problem is an online linear optimization problem over the probability simplex

{x ∈ RN≥0 :
∑N
i=1 xi = 1} with linear losses `t(w) = gt · w such that each gt = (gt,1, . . . , gt,N ) satisfies

|gt,i| ≤ ci for some known quantities ci. Given a prior discrete distribution (π1, . . . , πN ), the objective is

to guarantee that the regret with respect to the ith basis vector ei (the ith “expert”) scales with ci. Formally,

we want RT (ẘ) = O(
∑N
i=1 ci|ẘi|

√
T log(ci|ẘi|T/πi)). As discussed in depth by [20], such a guarantee

allows us to combine many optimization algorithms into one meta-algorithm that converges at the rate of the

best algorithm in hindsight.

We accomplish this through two reductions. First, given any distribution (π1, . . . , πN ) and any family

of 1-dimensional OLO algorithms A(ε) that guarantees R(u) ≤ O
(
ε+ |u|

√
log(|u|T/ε)T

)
on 1-Lipschitz

losses for any given ε (such as our Algorithm 2 or many other parameter-free algorithms), we apply the classic

“coordinate-wise updates” trick [58] to generate an N -dimensional OLO algorithm with regret RT (u) =

O
(
ε+

∑N
i=1 |ui|

√
log (|ui|T/(επi))T

)
on losses that are 1-Lipschitz with respect to the 1-norm.
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Algorithm 9 Coordinate-Wise Updates

Require: parametrized family of 1-D online learning algorithm A(ε), prior π ∈ RN , ε > 0
1: Initialize: N copies of A: A1(επ1), . . . ,AN (επN )
2: for t = 1 to T do
3: Get points zt,i from Ai for all i to form vector zt = (zt,1, . . . , zt,N )
4: Play zt, get loss gt ∈ RN with ‖gt‖∞ ≤ 1
5: Send gt,i to Ai for all i
6: end for

Theorem 6.1. Suppose for any ε > 0, A(ε) guarantees regret

RT (ẘ) ≤ RT (ε, ẘ, g1, . . . , gT )

when run on 1-dimensional subgradients g1, . . . , gt ∈ R with |gt| ≤ 1. Then Algorithm 9 guarantees regret

RT (ẘ) ≤
N∑
i=1

RT (ε/πi, ẘi, g1,i, . . . , gT,i)

Proof. By A’s regret guarantee we have

T∑
t=1

wt,igt,i − ẘigt,i ≤ RT (επi, ẘi, g1,i, . . . , gt,i)

Summing over all i we obtain:

RT (ẘ) =

T∑
t=1

〈gt, wt − ẘ〉

=

N∑
i=1

T∑
t=1

gt,i(wt,i − ẘi)

≤
N∑
i=1

πiRT (επi, ẘi, g1,i, . . . , gT,i) .

When e apply this result to a 1-D algorithm that guarantees

RT (u) ≤ O
(
ε+ |u|

√
log(|u|T/ε)T

)
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such as described in the previous section, or in prior works [35], we obtain

RT (ẘ) = O

ε+

N∑
i=1

|ẘi|

√√√√ T∑
t=1

g2
t,i log(|ẘi|2

T∑
t=1

g2
t,i/ε

2π2
i )



Algorithm 10 Multi-Scale Experts

Require: parametrized 1-D Online learning algorithm A(ε), prior π, scales c1, . . . , cN
1: Initialize: coordinate-wise algorithm Aπ with prior π using A(ε)

2: Define W = {x : xi ≥ 0 for all i and
∑N
i=1 xi/ci = 1}

3: Let AWπ be the result of applying the unconstrained-to-constrained reduction to Aπ with constraint set
W using ‖ · ‖1

4: for t = 1 to T do
5: Get point zt ∈W from AWπ
6: Set xt ∈ RN by xt,i = zt,i/ci. Observe that xt is in the probability simplex
7: Play xt, get loss vector gt
8: Set g̃t ∈ RN by g̃t,i =

gt,i
ci

9: Send g̃t to AWπ
10: end for

With this in hand, notice that applying our reduction Algorithm 5 with the 1-norm easily yields an algo-

rithm over the probability simplex W with the same regret (up to a factor of 2), as long as ‖gt‖∞ ≤ 1. Then,

we apply an affine change of coordinates to make our multi-scale experts losses have ‖gt‖∞ ≤ 1, so that

applying this algorithm yields the desired result (see Algorithm 10).

Theorem 6.2. If gt satisfies |gt,i| ≤ ci for all t and i and A(ε) guarantees the regret bound

RT (u) ≤ O
(
ε+ |u|

√
log(|u|T/ε)T

)
then, for any ẘ in the probability simplex, Algorithm 10 satisfies the regret bound

RT (ẘ) ≤ O

(
ε+

N∑
i=1

Ci|ẘi|

√
log

(
Ci|ẘi|T
επi

)
T

)
.

Proof. Given any ẘ in the probability simplex, define w̃ ∈ RN by w̃i = ẘici. Observe that w̃ ∈W . Further,

observe that since |gt,i| ≤ ci, ‖g̃t‖∞ ≤ 1. Now, by Theorem 6.1 and Theorem 5.4 we have

T∑
t=1

g̃t · zt − g̃t · w̃ ≤ O

(
ε+

N∑
i=1

|w̃i|

√
log

(
|w̃i|T
επi

)
T

)
= O

(
ε+

N∑
i=1

ci|ẘi|

√
log

(
ci|ẘi|T
επi

)
T

)
,

where in the equality we simply substitute the definition of w̃. Finally, observe that g̃t · zt =
∑N
i=1 g̃t,izt,i =∑N

i=1
gt,i
ci
cixt,i = gt · xt and similarly g̃t · w̃ = gt · ẘ. Thus

∑T
t=1 g̃t · zt − g̃t · w̃ =

∑T
t=1 gt · (xt − ẘ),

which completes the proof.
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In Appendix 6.A we show how to compute the projection ΠS and a subgradient of SW in O(N) time via

a simple greedy algorithm. As a result, our entire reduction runs in O(N) time per update.

6.2 Sparsity

In this section we analyze the coordinate-wise reduction (Algorithm 9) from the previous section and show

that we can adapt to sparsity in the subgradients gt as well as the comparison point ẘ, while still maintaining

good performance when neither the subgradients nor the comparison point is sparse. More concretely, let us

assume that our domain W is RN for some N , and that each subgradient gt satisfies ‖gt‖∞ ≤ 1. Then if we

apply Theorem 6.1 to our 1-D coin-betting strategy (Algorithm 2) with πi = 1
N for all i and ε = 1, we obtain

RT (ẘ) ≤ O

 N∑
i=1

|ẘi|

√√√√ T∑
t=1

g2
t,i log

(
N2|ẘi|2

T∑
t=1

g2
t,i

) (6.1)

where ẘi and gt,i indicate the ith coordinates of the corresponding vectors.

It is interesting to compare this regret bound to the one we obtain in Chapter 5 via our reduction from

Banach space online learning to 1 dimensional online learning using the 2-norm (Algorithm 3). Recall that

applying this reduction using the 2-norm will give regret:

RT (ẘ) = O

‖ẘ‖max

ln
‖ẘ‖

∑T
t=1 ‖gt‖2?
ε

,

√√√√ T∑
t=1

‖gt‖2? ln

(
‖ẘ‖2

∑T
t=1 ‖gt‖2?
ε2

+ 1

)
In contrast, applying Cauchy-Schwarz inequality to (6.1) yields:

RT (ẘ) ≤ O

‖ẘ‖2
√√√√ T∑

t=1

‖gt‖22 log(N2‖ẘ‖2∞T )

 (6.2)

which differs by only a log(N) factor. Thus using coordinate-wise updates seems to lose only a very small

dimension-dependence over using the reduction of Algorithm 3 for the 2-norm.

Next, consider a case in which we expect ẘ to be very sparse. For example, perhaps we are performing

linear regression and we expect most of our regressors to actually carry no signal. Without loss of generality,
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let ẘi 6= 0 for i ≤ K and ẘi = 0 for i ≥ K. Then (6.1) immediately implies:

RT (ẘ) ≤ O

 K∑
i=1

|ẘi|

√√√√ T∑
t=1

g2
t,i log(N2|ẘi|2T )

 (6.3)

≤ O

‖ẘ‖1
√√√√ T∑

t=1

‖gt‖2∞ log(N2‖ẘ‖2∞T )

 (6.4)

(6.5)

This means that, at the cost of a log(N) factor, we can add as many irrelevant coordinates as we like without

affecting the regret bound!

Finally, we report an example by [17] which suggests that (6.1) implies lower regret when the gt are

sparse as well: suppose each gt,i 6= 0 with probability proportional to 1/i2, and is 1 otherwise. Then we have

RT (ẘ) ≤ O

‖ẘ‖∞ N∑
i=1

√√√√ T∑
t=1

g2
t,i log(N2|ẘi|2T )


≤ O

(
‖ẘ‖∞

N∑
i=1

√
T log(N2‖ẘ‖2∞T )

i2

)
≤ O

(
‖ẘ‖∞ log(N)

√
T log(N2‖ẘ‖2∞T )

)
In contrast, if ẘ is a dense vector, we would expect ‖ẘ‖2 ≈ ‖ẘ‖∞

√
N , and so we have saved a factor of

√
N over the bound (6.2).

6.3 Conclusions

The results in this chapter are surprisingly straightforward to derive using our reductions from chapter 5

(with the exception of computing the gradient of SW in Algorithm 10). Nevertheless, their guarantees are

also surprisingly strong. This exemplifies the power of using reductions to derive algorithms: by peeling

away complicated internal details of individual algorithms, we are able to zero in on only the critical parts

of the analysis and remove unnecessary work. It is my hope that more applications and improved reductions

will continue this process in the future.



Appendix

6.A Computing SW for multi-scale experts

In this section we show how to compute ΠW (x) and a subgradient of SW (x) used in Algorithm 10. First

we tackle ΠW (x). Without loss of generality, assume the ci are ordered so that c1 ≥ c2 ≥ · · · ≥ cN . We

also consider Wk = {x : xi ≥ 0 for all i and
∑N
i=1 xi/ci = k} instead of W = W1. Obviously we are

particularly interested in the case k = 1, but working in this mild generality allows us to more easily state an

algorithm for computing ΠW (x) in a recursive manner.

Proposition 6.3. Let N > 1 and Wk = {x : xi ≥ 0 for all i and
∑N
i=1 xi/ci = k}, and let SWk

(x) =

infy∈Wk
‖x− y‖1. Suppose the ci are ordered so that c1 ≥ c2 ≥ · · · ≥ cN . Then for any x = (x1, . . . , xn),

there exists a y = (y1, . . . , yn) ∈ ΠWk
(x) such that

y1 =


0, x1 < 0

x1, x1 ∈ [0, kc1]

kc1, x1 > kc1

Proof. First, suppose N = 1. Then clearly there is only one element of Wk and so the choice of ΠWk
(x) is

forced. So now assume N > 1.

Let (y1, . . . , yN ) ∈ ΠWk
(x1, . . . , xN ) be such that |y1 − x1| is as small as possible (such a point exists

because Wk is compact).

We consider three cases: either x1 > kc1, x1 < 0 or x1 ∈ [0, kc1].

Case 1: x > kc1. Suppose y1 < kc1. Let i be the largest index such that yi 6= 0. i 6= 1 since

y1/c1 < k. Choose 0 < ε < min(yi
c1
ci
, kc1 − y1). Then let y′ be such that y′1 = y1 + ε, y′i = yi − ε cic1 and

y′j = yj otherwise. Then by definition of ε, y′i ≥ 0 and y′1 ≤ kc1. Further,
∑N
j=1 y

′
j/cj = ε/c1 − ci

c1
ε/ci +∑N

j=1 yj/cj = k so that y′ ∈Wk. However, since x1 > kc1, ‖y′ − x‖1 ≤ ‖y − x‖1 − ε+ ε cic1 ≤ ‖y − x‖1.

Therefore, y′ ∈ ΠWk
(x), but |y′1 − x1| < |y1 − x1|, contradicting our choice of y1. Therefore, y1 = kc1.

Case 2: x < 0. This case is very similar to the previous case. Suppose y1 > 0. Let i be the largest index

such that yi 6= kci. i 6= 1 since otherwise
∑N
j=1 yj/cj >

∑N
j=2 k = k(N − 1) ≥ k, which is not possible.

Choose 0 < ε < min(y1, c1(kci − yi)/ci). Set y′ such that y′1 = y1 − ε, y′i = yi + ε cic1 . Then, again we have
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y′ ∈Wk and ‖y′ − x‖1 ≤ ‖y− x1‖1 − ε+ ε cic1 ≤ ‖y− x‖1 so that y′ ∈ ΠWk
(x), but |y′1 − x1| < |y1 − x1|.

Therefore, we cannot have y1 > 0 and so y1 = 0.

Case 3: x ∈ [0, kc1]. Suppose y1 < x1 ≤ kc1. Then by the same the argument as for Case 1, there

is some i > 1 such that for any 0 < ε < min(yi
c1
ci
, x1 − y1), we can construct y′ with y′ ∈ ΠWk

(x) and

|y′1 − x1| < |y1 − x1|. Therefore, y1 ≥ x1.

Similarly, if y1 > x1, then by the same argument as for Case 2, there is some i > 1 such that for any

0 < ε < min(y1 − x1, c1(kci − yi)/ci), we again construct y′ with y′ ∈ ΠWk
(x) and |y′1 − x1| < |y1 − x1|.

Therefore, y1 = x1.

This result suggests an explicit algorithm for choosing y ∈ ΠW (x) = ΠW1
(x). Using the Proposi-

tion we can pick y1 such that there is a y ∈ ΠW1
(x) with first coordinate y1. If y ∈ ΠWk

(x) has first

coordinate y1, then if W 2
k = {(y2, . . . , yn) : yi ≥ 0 for all i and

∑N
i=2 yi/ci = k}, then (y2, . . . , yN ) ∈

ΠW 2
k−y1/c1

(x2, . . . , xN ). Therefore, we can use a greedy algorithm to choose each yi in increasing order of

i and obtain a point y ∈ ΠWk
(x) in O(N) time. This procedure is formalized in Algorithm 11.

Algorithm 11 Computing ΠW (x)

Require: (x1, . . . , xN ) ∈ RN
1: Initialize: k1 = 1, i = 1
2: for i = 1 to N do
3: if i = N then
4: Set yi = kici
5: else
6: if xi ≤ 0 then
7: Set yi = 0
8: end if
9: if xi > kici then

10: Set yi = kici
11: end if
12: if xi ∈ (0, kici] then
13: Set yi = xi
14: end if
15: Set ki+1 = ki − yi/ci
16: end if
17: end for
18: return (y1, . . . , yN )

6.A.1 Computing a subgradient of SW for multi-scale experts

Unfortunately, ‖ · ‖1 does not satisfy the hypotheses of Theorem 5.6 and so we need to do a little more work

to compute a subgradient.

Proposition 6.4. Let (y1, . . . , yn) be the output of Algorithm 11 on input x = (x1, . . . , xN ). Then if i = N ,
∂SW (x)
∂xi

= sign(xN − yN ). Let M be the smallest index such that yM = kMcM , where ki is defined in
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Algorithm 11. There exists a subgradient g ∈ ∂SW (x) such that

gi =


−1, xi ≤ 0

1, xi > kici

sign(xM − yM ) cMci , xi ∈ (0, kici], xM 6= kMcM
cM
ci
, xi ∈ (0, kici], xM = kMcM

Proof. We start with a few reductions. First, we show that by a small perturbation argument we can assume

xM 6= kMcM . Next, we show that it suffices to prove that SW is linear on a small L∞ ball near x. Then we

go about proving the Proposition for that L∞ ball, which is the meat of the argument.

Before we start the perturbation argument, we need a couple observations about M . First, observe that

ki = yi = 0 for all i > M .

Next, we show that either have M = N , or xM ≥ kMcM . If M 6= N , then by inspection of the

Algorithm 11, we must have xM ≤ 0 and kM = 0 or xM ≥ kMcM . If kM = 0, then we have 0 =

kM = kM−1 − yM−1

cM−1
. This implies kM−1cM−1 = yM−1, which contradicts our choice of M as the smallest

index with yM = kMcM . Therefore, we must have xM ≥ kMcM . Therefore, we must have M = N , or

xM ≥ kMcM .

Now, we show that we may assume xM 6= kMcM . Let δ > 0. If xM 6= kMcM , set xδ = x. Otherwise,

set xδ = x + δeM . By inspecting Algorithm 11, we observe that the output on xδ is unchanged from the

output on x, and M is still the smallest index such that yi = kici.

We claim that it suffices to prove g ∈ ∂SW (xδ) for all δ rather than g ∈ ∂SW (x). To see this, observe

that by 1-Lipschitzness, |SW (xδ)− SW (x)| ≤ δ, so that if g ∈ ∂SW (xδ), then for any w,

SW (w) ≥ SW (xδ) + 〈g, w − xδ〉 ≥ SW (x) + 〈g, w − x〉 − 2δ .

By taking δ → 0, we see that g must be a subgradient of SW at x if g ∈ ∂SW (xδ) for all δ. This implies that

if we prove the Proposition for any xδ , which has xM 6= kMcM , we have proved the proposition for x.

Following this perturbation argument, for the rest of the proof we consider only the case xM 6= kMcM .

Now, we claim that to show the Proposition, it suffices to exhibit a closed L∞ ball B such that x is on the

boundary of B and for z ∈ B, SW (z) = 〈g, z〉 + F for some constant F . To see this, first suppose that we

have such a B. Then observe that g is the derivative, and therefore a subgradient, of SW for any point in the

interior ofB. Let z be in the interior ofB and let w be an arbitrary point in RN . Then since g is a subgradient

at z, we have SW (w) ≥ SW (z) + 〈g, w − z〉. Further, since x is on the boundary of B (and therefore in B),

SW (x) = SW (z) + 〈g, x− z〉. Putting these identities together:

SW (w) ≥ SW (z) + 〈g, w − z〉

= SW (z) + 〈g, x− z〉+ 〈g, w − x〉

= SW (x) + 〈g, w − x〉 .
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Therefore, g is a subgradient of SW at x.

Next, we turn to identifying the particular L∞ ball we will work with. Let

q =
1

2
min
xi>0

xi,

d =
1

2
min

j|xj 6=kjcj
min(1/c1, 1)|xj − cjkj |,

h = min(q, d) min(cN , 1)/N .

Consider the L∞ ball given by

B = {x+ (ε1, . . . , εN )| εj ∈ [−h, 0]} .

Clearly, x is on the boundary of B. Now, we proceed to show that SW is linear on the interior of B,

which will prove the Proposition by the above discussion.

Let x′ = x + ε be an element of B. We will compute SW (x′) by computing the output y′ of running

Algorithm 11 on x′. We will also refer to the internally generated variables ki as k′i to distinguish between

the ks generated when computing y versus when computing y′. The overall strategy is to show that all of the

conditional branches in Algorithm 11 will evaluate to the same branch on x as on x′.

Specifically we show the following claim by induction:

Claim 6.5. for any i < M :

y′i =

{
0 xi ≤ 0

x′i xi ∈ (0, kici]
,

k′i+1 = ki+1 +
∑

j≤i, xj∈(0,kjcj ]

−εj/cj ,

ki+1 ≤ k′i+1 ≤ ki+1 + d
i

2N
,

|y′i − x′i| =

{
|yi − xi| − εi xi ≤ 0

|yi − xi| xi ∈ (0, kici]
.

For i = M ,

y′i = k′ici,

k′i+1 = 0,

|y′i − x′i| = |yi − xi|+ sign(xi − yi)εM +
∑

j<M | xj∈(0,kjcj ]

cM εj/cj .
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And for i > M :

y′i = 0,

k′i+1 = 0,

|y′i − x′i| =

{
|yi − xi| − εi xi ≤ 0

|yi − xi|+ εi xi > 0
.

First we do the base case. Observe that k′1 = k1. Then we consider three cases, either x1 ≤ 0, x1 ∈
(0, k1c1], or x1 > k1c1. These cases correspond to y1 = 0, y1 = x1, or y1 = k1c1.

Case 1 (x1 ≤ 0): Since ε1 ≤ 0, we have x′1 = x1 +ε1 ≤ 0. Therefore, by inspecting the condition blocks

in Algorithm 11, y′1 = y1 = 0 and k′2 = k2.

Case 2 (x1 ∈ (0, k1, c1]): Since x1 > 0, we have |ε1| ≤ q ≤ x1/2. Therefore, x′1 > 0. Since ε1 ≤ 0,

x′1 ≤ x1 ≤ k1c1 = k′1c1 so that x′1 ∈ (0, k′1c1]. This implies y′1 = x′1 and

k′2 = k′1 −
x′1
c1

= k1 −
x1 + ε1
c1

= k2 −
ε1
c1
.

Case 3 (x1 > k1c1): In this last case, observe that |ε1| < d ≤ (x1 − k1c1)/2 so that x1 ≥ x′1 > k1c1 =

k′1c1. This implies y′1 = k′1c1 = k1c1 and k′2 = 0.

The values for |y′1−x′1| can also be checked via the casework. First, suppose 1 = M . Then we must have

x1 > k1c1 (because we assume xM 6= kMcM by our perturbation argument). Therefore, y1 = y′1 = k1c1

and the base case is true.

When 1 < M , then we consider the cases x1 ≤ 0 and x1 ∈ (0, k1c1]. The case x1 > k1c1 does not

occur because 1 < M . When x1 ≤ 0, then by the above casework we must have x′1 ≤ 0 and y′1 = y1 = 0.

Therefore,

|y′1 − x′1| = |x′1| = |x1|+ |ε1| = |y1 − x1| − ε1,

where we have used ε1 ≤ 0 to conclude |x′1| = |x1|+ |ε1|.
When x1 ∈ (0, k1c1], we have y1 = x1, and by the above casework we have and y′1 = x′1. Thus

|y′1 − x′1| = 0 = |y1 − x1|. This concludes the base case of the induction.

Now, we move on to the inductive step. Suppose the claim holds for all j < i. To show the claim also

holds for i, we consider the three cases i < M , i = M and i > M separately:

Case 1 (i < M ): We must consider two sub-cases, either xi ≤ 0, or xi ∈ (0, kici]. The case xi > kici
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does not occur because i < M .

Case 1a (xi ≤ 0): In this case, we have yi = 0 and ki+1 = ki. By definition, εi ≤ 0 so that x′i ≤ 0. Then

by inspection of Algorithm 11, y′i = 0 = yi so that k′i+1 = k′i. By the induction assumption, this implies

k′i+1 = k′i = ki +
∑

j<i, xj∈(0,kjcj ]

−εj/cj = ki+1 +
∑

j≤i, xj∈(0,kjcj ]

−εj/cj .

Also, k′i+1 = k′i ≥ ki = ki+1 and also

|k′i+1 − ki+1| = |k′i − ki| ≤ d
i− 1

N
≤ d i

N
.

Finally, since y′i = 0 = yi and xi, x′i ≤ 0, we have

|y′i − x′i| = |x′i| = −x′i = −xi − εi = |xi| − εi = |yi − xi| − εi .

Thus all parts of the claim continue to hold.

Case 1b (xi ∈ (0, kici]): In this case we show that x′i ∈ (0, k′i, ci]. Observe that yi = xi and ki+1 =

ki − xi/ci. By definition again, εi ≤ 0, and also |εi| ≤ q ≤ xi/2, so that x′i > 0. Finally, since k′i ≥ ki,

x′i ≤ xi ≤ ciki ≤ cik′i .

Therefore, x′i ∈ (0, k′ici] so that y′i = x′i and

k′i+1 = k′i − x′i/ci

= ki + (k′i − ki)− xi/ci − εi/ci

= ki+1 + (k′i − ki)− εi/ci

= ki+1 +
∑

j≤i, xj∈(0,kjcj ]

−εj/cj ,

where the last equality uses the induction assumption. Now, since εj ≤ 0 for all j, this implies k′i+1 ≥
ki+1. Further, |εi/ci| ≤ dcN/(Nci) ≤ d/N and by the inductive assumption, |k′i − ki| ≤ d i−1

N so that

|k′i+1 − ki+1| ≤ d i
N as desired. Finally, since y′i = x′i and yi = xi, |y′i − x′i| = 0 = |yi − xi|.

Case 2 (i = M ): First we show that y′i = k′ici, which implies k′i+1 = 0, and then we prove the expression

for |y′i − x′i|. Since xM 6= kMcM , we must have either either xi > kici or M = N .

If M = N , then the claim y′i = k′ici is immediate by inspection of Algorithm 11. So suppose xi > kici.

By the inductive assumption, k′i ≤ ki + d i
N ≤ ki + d. Now, we observe that d ≤ 1

2c1
(xi − ciki) ≤
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1
2ci

(xi − ciki), which implies

cik
′
i ≤ ciki + cid

≤ ciki + (xi − ciki)/2

≤ xi − (xi − ciki)/2 .

Next, observe that d ≤ 1
2 (xi − ciki) to conclude

cik
′
i ≤ xi − (xi − ciki)/2

≤ xi − d

≤ xi − h

≤ x′i .

Therefore, x′i ≥ k′ici, so that y′i = cik
′
i.

It remains to compute |y′i − x′i|. By the induction assumption, we have

k′i = ki +
∑

j<i, xj∈(0,kjcj ]

−εj/cj .

Therefore,

x′i − y′i = xi + εM − yi + cM
∑

j<i, xj∈(0,kjcj ]

εj/cj . (6.6)

Observe that εM + cM
∑
j<i, xj∈(0,kjcj ]

εj/cj ≤ 0 since εi ≤ 0 for all i ≤ M . Now, since cM ≤ cj for

j ≤M , we have ∣∣∣∣∣∣εM + cM
∑

j<i, xj∈(0,kjcj ]

εj/cj

∣∣∣∣∣∣ ≤ Nh ≤ d .
Now, since xM 6= xMkM , and i = M , we have d ≤ |xi−ciki|2 by definition so that∣∣∣∣∣∣εM + cM

∑
j<i, xj∈(0,kjcj ]

εj/cj

∣∣∣∣∣∣ ≤ |xi − ciki|/2 =
|xi − yi|

2
.
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Now, recalling equation (6.6) we have

sign(x′i − y′i) = sign

xi − yi +

εM + cM
∑

j<i, xj∈(0,kjcj ]

εj/cj


= sign(xi − yi),

where in the last line we have used
∣∣∣εM + cM

∑
j<i, xj∈(0,kjcj ]

εj/cj

∣∣∣ ≤ |xi−yi|2 . Therefore, we have

|x′i − y′i| = sign(x′i − y′i)(x′i − y′i)

= sign(xi − yi)

xi − yi + εM + cM
∑

j<i, xj∈(0,kjcj ]

εj/cj


= |xi − yi|+ sign(xi − yi)

εM + cM
∑

j<i, xj∈(0,kjcj ]

εj/cj

 .

Case 3 (i > M ):
Since k′i = 0 by inductive hypothesis, we must have y′i = 0 as desired. Further, observe that as observed

in the beginning of the proof, ki = 0 for all i > M as well so that we have yi = 0. Finally, if xi > 0, we

have xi + εi ≥ xi/2 > 0 since |εi| ≤ q ≤ xi/2 so that sign(x′i) = sign(xi). Therefore, we can conclude

|y′i − x′i| = |x′i| =

{
|xi| − εi xi ≤ 0

|xi|+ εi xi > 0
.

Since yi = 0, |xi| = |yi − xi| and this is the desired form for |y′i − x′i|.
This concludes the induction.

From the expression for |y′i − x′i| we see that if g is given by

gi =


−1 xi ≤ 0

1 xi > kici

sign(xM − yM ) cMci xi ∈ (0, kici], xM 6= kMcM
cM
ci

xi ∈ (0, kici], xM = kMcM

then SW (x+ ε) = SW (x) + 〈g, ε〉. Finally, observe that our perturbation xδ has the property sign((xδ)M −
yM ) = 1 if xM = kMyM to prove the Proposition.



Chapter 7

Losses With Curvature

In the previous chapters we have exclusively considered the problem of online linear optimization, in which

all loss functions `t must be linear. This is an extremely important problem because any online linear op-

timization algorithms can be directly applied to online convex optimization problems through the use of

subgradients. Since subgradients are often relatively efficient to compute, this results in fast and effective

algorithms. However, one might wonder if we could obtain tighter regret bounds by leveraging some non-

linearity of the losses.

In this chapter we will exploit the notions of smoothness and strong convexity to obtain asymptotic im-

provements in our regret bounds. In particular, while our bounds for online linear optimization are all Õ(
√
T ),

we will be able to obtain Õ(1) regret for smooth or strongly convex losses. An interesting property of all the

results in this section is that we will continue to only make use of subgradients, so that even though we obtain

smaller regret on these special classes of curved losses, our algorithms do not actually need to be provided

with any parameters characterizing this curvature.

Before describing the results, we briefly recall the basic facts about smoothness and strong convexity. A

convex function ` is L-smooth if it is differentiable `(x+ δ) ≤ `(x) + 〈∇`(x), δ〉+ L
2 ‖δ‖

2 for any x and δ.

This implies that

inf
z
`(z) ≤ `(w)− 1

2L
‖∇`(w)‖2? (7.1)

by choosing δ = argmin〈∇`(w), δ〉+ L
2 ‖δ‖

2.

Recall that a convex function ` is µ-strongly convex if `(x+ δ) ≥ `(x) + 〈g, δ〉+ µ
2 ‖δ‖

2 for any x, δ and

g ∈ ∂`(x) (strongly-convex functions do not need to be differentiable). Rearranging this definition implies

`(w)− `(ẘ) ≤ 〈g, w − ẘ〉 − µ

2
‖w − ẘ‖2 (7.2)

113
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Previously (in Section 3.3) we saw that strongly convex losses are much easier to optimize than the worst-

case linear losses: we can achieve O(log(T )/µ) regret for µ-strongly convex losses, while the best we can

guarantee with linear losses is O(
√
T ). In this chapter we will demonstrate how to achieve both bounds

simultaneously without knowledge of µ.

7.1 Adapting to Smoothness

In this section we will show that our prior algorithms, without further modification, actually obtain improved

regret on smooth losses. The analysis in this subsection is based on well-known prior results (e.g. [56]), but

we restate the basic facts here for completeness.

Our first result states that, so long as the the benchmark point ẘ is close to the minimum of each individual

`t, we obtain better than
√
T regret:

Theorem 7.1. Suppose each `t is L-smooth with respect to some norm ‖ · ‖, and let

ZT (ẘ) =

T∑
t=1

`t(ẘ)− inf
w∈W

`t(w)

Suppose an online learning algorithm obtains regret

RT (ẘ) ≤ ζT (ẘ) + ψT (ẘ)

√√√√ T∑
t=1

‖gt‖2?

for some functions ζT and ψT . Then the same algorithm also guarantees

RT (ẘ) ≤ 8LψT (ẘ)2 + 2ψT (ẘ)
√

2LZT (ẘ) + 2ζT (ẘ)

This Theorem is stated in a rather general form, but we can immediately apply it to our algorithm from

the previous chapter (see Section 5.2), which obtains

RT (ẘ) ≤ ε+ Õ

‖ẘ‖
√√√√ T∑

t=1

‖gt‖2?


and so for smooth losses guarantees

RT (ẘ) ≤ ε+ Õ
(
L‖ẘ‖2 + ‖ẘ‖

√
LZT (ẘ)

)
Notice that in the non-online case in which each `t is fixed to some constant loss `, we can take ẘ = argmin `

to get ZT (ẘ) = 0. Thus in this case we actually obtain logarithmic regret. Further, observe that the algorithm

at not point actually requires any information about the smoothness parameter L, so that it is in some sense
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adapting to this second-order parameter using only first-order information!

Before we can prove Theorem 7.1, we need a small technical proposition:

Proposition 7.2. If a, b, c and d are non-negative constants such that

x ≤ a
√
bx+ c+ d

Then

x ≤ 4a2b+ 2a
√
c+ 2d

Proof. Suppose x ≥ 2d. Then we have

x

2
≤ a
√
bx+ c

x2 ≤ 4a2bx+ 4a2c

Now we use the quadratic formula to obtain

x ≤ 4a2b

2
+

√
16a4b2 + 16a2c

2

≤ 4a2b+ 2a
√
c

Since we assumed x ≥ 2d to obtain this bound, we conclude that x is at most the maximum of 4a2b+ 2a
√
c

and 2d, which is bounded by their sum.

With this in hand, we can prove the actual Theorem:

Proof of Theorem 7.1. By equation (7.1) we have

inf
z
`t(z) ≤ `t(wt)−

1

2L
‖gt‖2?

so that

T∑
t=1

‖gt‖2? ≤ 2L

T∑
t=1

`t(wt)− inf
z
`t(z) = 2L

(
ZT (ẘ) +

T∑
t=1

`t(ẘ)− `t(ẘ)

)
= 2L(ZT (ẘ) +RT (ẘ))

Therefore we have

RT (ẘ) ≤ ζT (ẘ) + ψT (ẘ)
√

2LZT (ẘ) + 2LRT (ẘ)
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Now apply Proposition 7.2 to obtain

RT (ẘ) ≤ 8LψT (ẘ)2 + 2ψT (ẘ)
√

2LZT (ẘ) + 2ζT (ẘ)

as desired.

Next we will prove a potentially finer-grained versions of Theorem 7.1 that applies in a stochastic setting

when the gradients gt are random variables with E[gt|w1, . . . , wt] = ∇L for some fixed loss function L:

Theorem 7.3. Suppose `t is an random L-smooth function with E[`t|Ht] = L for some fixed L-smooth and

convex loss function L, whereHt is the history of an online linear optimization algorithm up to round t. Then

if the online linear optimization algorithm guarantees

RT (ẘ) ≤ ζT (ẘ) + ψT (ẘ)

√√√√ T∑
t=1

‖gt‖2?

Then if ẘ ∈ argminL, the algorithm also guarantees

E[RT (ẘ)] ≤ 2ζT (ẘ) + 16LψT (ẘ)2 + 2ψT (ẘ)

√√√√2

T∑
t=1

σ2
t

where σt = E[‖∇`t(ẘ)‖2?|Ht] is the variance of the gradient of `t at ẘ.

We can directly apply this result to our algorithm from the previous chapter to obtain

E[RT (ẘ)] ≤ ε+ Õ

L‖ẘ‖2 + ‖ẘ‖

√√√√ T∑
t=1

σ2
t


Again, the algorithm at not point requires knowledge of L.

Proof. All expectations of quantities involving subscripts in this proof are conditioned on the past history of

the algorithm.

First, observe that the function ˆ̀
t(w) = `t(w)− 〈∇`t(ẘ), w〉 is convex, L-smooth, and has the property

that∇ˆ̀
t(ẘ) = 0 so that ẘ ∈ argmin ˆ̀

t(ẘ). Therefore we have

E[‖∇ˆ̀
t(wt)‖2?] ≤ E[2L(ˆ̀

t(wt)− ˆ̀
t(ẘ))]

‖∇`t(wt)−∇`t(ẘ)‖2? ≤ 2LE[`t(wt)− `t(ẘ) + 〈∇`t(ẘ), ẘ − wt〉]

= 2LE[`t(wt)− `t(ẘ)]
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where in the last line we have used E[∇`t(ẘ)] = 0. Then we have

‖gt‖2? = ‖gt −∇`t(ẘ) +∇`t(ẘ)‖2?
≤ 2‖gt −∇`t(ẘ)‖2? + 2‖∇`t(ẘ)‖2?

where in the second line we have used triangle inequality and the fact that (A+B)2 ≤ 2A2 + 2B2. Then we

can conclude

E[RT (ẘ)] ≤ E[ζT (ẘ) + ψT (ẘ)

√√√√ T∑
t=1

2‖gt −∇`t(ẘ)‖2? + 2‖∇`t(ẘ)‖2?]

≤ ζT (ẘ) + ψT (ẘ)

√√√√2E[

T∑
t=1

‖gt −∇`t(ẘ)‖2? + ‖∇`t(ẘ)‖2?]

≤ ζT (ẘ) + ψT (ẘ)

√√√√4LE[RT (ẘ)] + 2

T∑
t=1

σ2
t

where the second line follows from Jensen inequality. Now we again apply Proposition 7.2 to obtain

E[RT (ẘ)] ≤ 2ζT (ẘ) + 16LψT (ẘ)2 + 2ψT (ẘ)

√√√√2

T∑
t=1

σ2
t

as desired.

7.1.1 Variance Reduction

In this section we will show how to use variance reduction techniques in concert with adaptive regret bounds

to achieve faster convergence for stochastic smooth problems. The variance reduction technique, first pio-

neered in [26], is a way to produce a stochastic gradient estimate gt with E[gt] = E[∇`t(wt)] = ∇L(wt) for

some L-smooth function L such that the variance at the optimal point σ2
t = E[‖∇`t(ẘ)−∇L(ẘ)‖2] is upper

bounded by L(L(v)−L(ẘ)) for some fixed “anchor point” v. This phenomenon has sparked a wealth of re-

cent interest, with many different algorithms designed to take advantage of it [2; 54; 21; 29; 3; 4]. However, to

our knowledge, ours is the first algorithm to do so via a black-box reduction, and so allows improvements to

online learning algorithms to immediately imply improvements to the algorithms in this section. The results

in this subsection are taken from my paper with Robert Busa-Fekete [15].

To begin, we first describe the setting and the variance reduction technique. Variance reduction requires

two main assumptions:

1. We assume access to a stream of i.i.d. random loss functions `1, `2, . . . such that E[`t] = L for some

function L, and that each `t is a convex L-smooth function.
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2. We assume that it is possible (although potentially computationally very expensive) to compute a true

gradient∇L(v) at any desired point v.

Variance reduction is classically applied to finite-sum optimization problems. That is, we are interested

in finding a minimizer of a function

L(w) =

N∑
i=1

fi(w) (7.3)

This type of problem is frequently encountered in practical machine learning contexts. In particular, when

performing empirical risk minimization, one uses the average loss on a training dataset to approximate the

true population loss. In this case, training the model involves simply minimizing the loss on the training data.

Since the training data is finite, this is a problem of the form (7.3).

The focus on finite-sum problems is motivated by the two assumptions required for variance reduction. In

a finite-sum problem it is indeed possible to generate a stream of i.i.d. random losses by repeatedly sampling

an index i at random and setting `t = fi. Further, we can compute∇L(v) in an (expensive) O(N) operation

by simply summing
∑N
i=1∇fi(v).

Using these two assumptions, we consider the following modified functions:

`vt (w) = `t(w) + 〈∇L(v)−∇`t(v), w〉

Observe that since E[∇`t(w)] = ∇L(v), we still have E[`vt (w)] = L(w). However, we now also have

the following key Proposition:

Proposition 7.4. [See [26]] Let ẘ ∈ argminL and let (σvt )2 = E[‖∇`vt (ẘ)‖2?] be the variance of ∇`vt (ẘ).

Suppose E[‖∇`t(w)−∇L(w)‖2?] ≤ σ2 for all t and w. Then

(σvt )2 ≤ min
(
2L(L(v)− L(ẘ)), 2σ2

)
Proof. The proof is a surprisingly straightforward calculation:

E[‖∇`vt (ẘ)‖2?] = E[‖∇`t(ẘ)−∇`t(v) +∇L(v)‖2?]

= E[‖∇`t(ẘ)−∇`t(v) + (∇L(ẘ)−∇L(v))‖2?]

≤ E[‖∇`t(ẘ)−∇`t(v)‖2?]

where here we have observed that L(ẘ) = 0 and E[∇`t(ẘ) − ∇`t(v)] = ∇L(ẘ) − ∇L(v), and then used

the fact that E[‖A − E[A]‖2?] ≤ E[‖A‖2?] for any random variable A. Then we continue as in the proof of
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Theorem 7.3

E[‖∇`vt (ẘ)‖2?] ≤ E[‖∇`t(ẘ)−∇`t(v)‖2?]

≤ 2LE[`t(v)− `t(ẘ) + 〈∇`t(ẘ), ẘ − v〉]

= 2L(L(v)− L(ẘ))

Finally, observe that since ‖a+ b‖2? ≤ 2‖a‖2? + 2‖b‖2?, we have

E[‖∇`vt (ẘ)‖2?] = E[‖∇`t(ẘ)−∇L(ẘ)−∇`t(v) +∇L(v)‖2?]

≤ 2E[‖∇`t(ẘ)−∇L(ẘ)‖2?] + 2E[‖∇`t(v)−∇L(v)‖2?]

≤ 2σ2

Algorithm 12 Variance Reduction with Online Learning

Require: Online learning algorithm A
1: Initialize: Epoch lengths 0 = T0, T1, T2, ...TK . Initial point v1.
2: for k = 1 to K do
3: Compute ∇L(vk).
4: for t = T0:k−1 + 1 to T1:k do
5: Get point wt from A.
6: Get loss `t.
7: Set ˆ̀v

t (w) = `t(w) + 〈∇L(vk)−∇`t(vk), w〉.
8: Compute gt = ∇ˆ̀v

t (wt).
9: Send gt to A as the tth loss.

10: end for
11: Set vk+1 = 1

Tk

∑T0:k

t=T0:k−1+1 wt.
12: end for

Theorem 7.5. Set T = T0:K . Suppose A guarantees

RT (ẘ) ≤ ζT (ẘ) + ψT (ẘ)

√√√√ T∑
t=1

‖gt‖2?

Then if ẘ ∈ argminL, Algorithm 12 guarantees

E[RT (ẘ)] ≤ 4ζT (ẘ) + 32L

(
1 + 2 max

k>1

Tk
Tk−1

)
ψT (ẘ)2 + 8ψT (ẘ)

√
T1σ2

Proof. Observe that E[`vt |Ht] = L, and so by Theorem 7.3, we have:
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E[RT (ẘ)] ≤ 2ζT (ẘ) + 16LψT (ẘ)2 + 2ψT (ẘ)

√√√√2

T∑
t=1

σ2
t

ζT (ẘ) + 16LψT (ẘ)2 + 2ψT (ẘ)

√√√√2

K∑
k=1

T0:k∑
t=T0:k−1+1

(σvkt )2

Now we apply Theorem 7.4 to control (σvkt )2, and then use Jensen inequality:

(σvkt )2 ≤ 2L(L(vk)− L(ẘ))

≤ 2L

 1

Tk−1

T0:k−1∑
t=T0:k−2+1

L(wt)− L(ẘ)


Now we sum over all the (σvkt )2:

K∑
k=1

T0:k∑
t=T0:k−1+1

(σvkt )2 ≤
T1∑
t=1

(σv1t )2 + 2L

K∑
k=2

T0:k∑
t=T0:k−1+1

 1

Tk−1

T0:k−1∑
t=T0:k−2+1

L(wt)− L(ẘ)


≤

T1∑
t=1

(σv1t )2 + 2L

K+1∑
k=2

T0:k∑
t=T0:k−1+1

 1

Tk−1

T0:k−1∑
t=T0:k−2+1

L(wt)− L(ẘ)


≤

T1∑
t=1

(σv1t )2 + 2Lmax
k>1

Tk
Tk−1

RT (ẘ)

From this we conclude (using
√
a+ b ≤

√
a+
√
b):√√√√2

T∑
t=1

σ2
t ≤

√√√√2

T1∑
t=1

(σv1t )2 + 2

√
Lmax
k>1

Tk
Tk−1

RT (ẘ)

so now we combine our inequalities to obtain:

E[RT (ẘ)] ≤ 2ζT (ẘ) + 16LψT (ẘ)2 + 2ψT (ẘ)

√√√√2

T∑
t=1

σ2
t

≤ ζT (ẘ) + 16LψT (ẘ)2 + 2ψT (ẘ)

√√√√2

T1∑
t=1

(σv1t )2 + 4Lmax
k>1

Tk
Tk−1

RT (ẘ)
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Finally, we apply Proposition 7.2:

E[RT (ẘ)] ≤ 4ζT (ẘ) + 32L

(
1 + 2 max

k>1

Tk
Tk−1

)
ψT (ẘ)2 + 4ψT (ẘ)

√√√√2

T1∑
t=1

(σv1t )2

≤ 4ζT (ẘ) + 32L

(
1 + 2 max

k>1

Tk
Tk−1

)
ψT (ẘ)2 + 8ψT (ẘ)

√
T1σ2

In order to use this theorem, we need to specify a particular algorithm, as well as choices for T1, T2, . . . .

Observe that the total number of times we compute a “true gradient” ∇L(vk) is K, so we might want Tk
to increase rapidly so as to maximize the number of cheap “stochastic gradient steps” inside the inner loop

of Algorithm 12 we make for every expensive true gradient computation. However, since Theorem 7.5

makes use of the quantity maxk>1
Tk
Tk−1

, we don’t want the Tk to grow super-exponentially. To satisfy both

requirements, we set Tk = 2k, and obtain the following Corollary:

Corollary 7.6. Set Tk = 2k, and set T = T0:K . Suppose A guarantees

RT (ẘ) ≤ ζT (ẘ) + ψT (ẘ)

√√√√ T∑
t=1

‖gt‖2?

and we set Tk = 2k. Suppose ζT and ψT are at most logarithmic in T , and σ is an upper bound on the

variance of ∇`t(w). Finally, suppose we are solving a finite sum problem L =
∑N
i=1 ft, and set w =

1
T

∑T
t=1 wt. then Algorithm 12 guarantees

E[L(w)− L(ẘ)] ≤ err

in Õ
(
N + 1

err

)
evaluations of gradients ∇fi(w), where Õ hides factors depending on ‖ẘ‖ and σ, and

logarithmic factors in 1
err .

This corollary (possibly up to log factors), matches the best non-accelerated rates for variance-reduced

methods. However, it has the advantage of not requiring any knowledge of L in order to achieve the desired

performance. Previous algorithms that achieve this convergence rate (e.g. [4]), require particular settings that

depend on L, and will fail to converge if these are set incorrectly.

Proof. First, by Jensen’s inequality we have

E[L(w)− L(ẘ)] ≤ 1

T
E

[
T∑
t=1

L(wt)− L(ẘ)

]

≤ 1

T
E[RT (ẘ)]
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Now by Theorem 7.5, we have

RT (ẘ) ≤ 4ζT (ẘ) + 160LψT (ẘ)2 + 8ψT (ẘ)
√

2σ2

Thus since ζT and ψT are logarithmic in T , we need T = Õ
(

1
err

)
in order to guarantee E[L(w)−L(ẘ)] ≤

err.

Next, observe that we can compute ∇L(vk) in N gradient evaluations. Then, since Tk = 2k, we have

K = O(log(T )). Thus we have a total of O(N log(T )) gradient evaluations needed to compute ∇L(vk)

for all k. Since each computation of gt requires an additional 2 gradient evaluations, we have a total of

O(N log(T ) + T ) gradient evaluations, which is Õ
(
N + 1

err

)
as desired.

7.2 Adapting to Strong Convexity

In this section, we present a black-box reduction to make a generic online learning algorithm over a Banach

space adaptive to strong convexity of the losses. Given a set W of diameter D = supx,y∈W ‖x − y‖,
our reduction obtains O(log(TD)2/µ) regret on online µ-strongly convex optimization problems, but still

guarantees O(log(TD)2D
√
T ) regret for online linear optimization problems, both of which are only log

factors away from the optimal guarantees. Critically, our algorithm again makes use only of first order

information, never requiring any knowledge of µ! The material in this section is taken from my two papers

[14; 16].

The reduction operates by achieving a regret bound like

T∑
t=1

〈gt, wt − ẘ〉 ≤

√√√√ T∑
t=1

‖wt − ẘ‖2‖gt‖2? (7.4)

This can be viewed a weaker version of the regret bound RT (ẘ) ≤
√∑T

t=1〈gt, wt − ẘ〉2 achieved by the

MetaGrad algorithm [59]. Although this regret bound is weaker, MetaGrad requiresO(d2) time per update to

achieve its bound in a d-dimensional space, while our algorithm requires the same O(d) runtime as gradient

descent.

Before we describe how to achieve the regret bound (7.4), we show how it implies the desired adaptivity:

Proposition 7.7. Suppose an online linear optimization algorithm guarantees the regret bound

T∑
t=1

〈gt, wt − ẘ〉 ≤ A+B

√√√√ T∑
t=1

‖wt − ẘ‖2‖gt‖2?
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for some A and B. Then when each gt is a subgradient of a µ-strongly convex loss `t, we have

RT (ẘ) =

T∑
T=1

`t(wt)− `t(ẘ) ≤ A+
B2G2

max

2µ

Proof. Recall that µ-strong convexity implies `t(wt)− `t(ẘ) ≤ 〈gt, wt − ẘ〉 − µ
2 ‖wt − ẘ‖

2. Therefore we

have

RT (ẘ) ≤
T∑
t=1

〈gt, wt − ẘ〉 −
µ

2
‖wt − ẘ‖2

≤ A+B

√√√√ T∑
t=1

‖wt − ẘ‖2‖gt‖2? −
T∑
t=1

µ

2
‖wt − ẘ‖2

≤ A+BGmax

√√√√ T∑
t=1

‖wt − ẘ‖2 −
T∑
t=1

µ

2
‖wt − ẘ‖2

≤ sup
X
A+BGmax

√
X − µ

2
X

≤ A+
B2G2

max

2µ

Thus if we could bound A by O(log(T )) and B by O(log2(T )), we would obtain our target results for

adapting to µ-strong convexity while maintaining
√
T regret in the non-strongly convex case.

In order to come up with an algorithm that achieves the bound (7.4), we interpret it as the square root of

E[‖w − ẘ‖2], where w is a random variable that takes on value wt with probability proportional to ‖gt‖2?.

This allows us to use the bias-variance decomposition to write (7.4) as:

RT (ẘ) ≤ Õ

‖ẘ − w‖√‖g‖2?1:T +

√√√√ T∑
t=1

‖gt‖2?‖wt − w‖2

 (7.5)

where w =
∑T
t=1 ‖gt‖

2
?wt

‖g‖2?1:T
. Now, our previous algorithm for unconstrained online linear optimization obtained

regret RT (ẘ) = Õ(‖ẘ‖
√
‖g‖2?1:T ) simultaneously for all ẘ ∈ W . Thus, if we know w ahead of time, we

could translate the predictions of this algorithm by w to obtain RT (ẘ) ≤ Õ(‖ẘ − w‖
√
‖g‖2?1:T ), the bias

term of (7.5). We do not actually knoww, but we can estimate it over time. Errors in the estimation procedure

will cause us to incur the variance term of (7.5).

Our overall strategy is very simple: we setwt = ŵt+wt−1 where ŵt is the tth output of an online learning

algorithm, and wt−1 is (approximately) a weighted average of the previous vectors w1, . . . , wt−1 with the

weight of wt equal to ‖gt‖2?. This wt offset can be viewed as a kind of momentum term that accelerates us

towards optimal points when the losses strongly convex, but has very little effect when the losses are general
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convex functions. The full psuedocode is given in Algorithm 13, and the analysis is provided in Theorem 7.8.

Algorithm 13 Adapting to Curvature

Require: Online learning algorithm A
1: Initialize: W , a convex closed set in a reflexive Banach space, x0 an arbitrary point in W
2: for t = 1 to T do
3: Get point wt from A
4: Set zt = wt + xt−1

5: Pick xt ∈ ΠW (zt)
6: Play xt, receive subgradient gt ∈ ∂`t(xt)
7: Set g̃t ∈ gt + ‖gt‖?∂SW (zt)

8: Set xt =
x0+

∑t
i=1 ‖g̃i‖

2
?xi

1+
∑t
i=1 ‖g̃i‖2?

9: Send g̃t so A as the tth subgradient
10: end for

Theorem 7.8. Let A be an online linear optimization algorithm that outputs wt in response to gt. Suppose

W is a convex closed set of diameter D. Suppose A guarantees for all t and v̊:

t∑
i=1

〈g̃i, wi − v̊〉 ≤ ε+ ‖̊v‖A

√√√√ t∑
i=1

‖g̃i‖2?
(

1 + ln

(
‖̊v‖2tC
ε2

+ 1

))
+B‖̊v‖ ln

(
‖̊v‖tC

ε
+ 1

)
,

for constants A, B and C and ε independent of t. Then for all ẘ ∈W , Algorithm 13 guarantees

RT (ẘ) ≤
T∑
t=1

〈gt, xt − ẘ〉 ≤ O

(√
VT (ẘ) ln

TD

ε
ln(T ) + ln

DT

ε
ln(T ) + ε

)
,

where VT (ẘ) := ‖x0 − ẘ‖2 +
∑T
t=1 ‖g̃t‖2?‖xt − ẘ‖2 ≤ D2 +

∑T
t=1 ‖gt‖2?‖xt − ẘ‖2.

7.3 Conclusions

In this chapter we applied online linear optimization algorithms to losses with some curvature structure. We

showed that even though online linear optimization algorithms only have access to first order information, it is

nevertheless possible to adapt to second-order information in a number of ways. We can adapt to smoothness

when the benchmark point always has small loss, and in the case of finite-sum problems we can actually

equal the convergence rate of the SVRG algorithm without knowing any smoothness parameters. When

the losses are strongly convex, we can adapt to the strong convexity parameter to obtain logarithmic regret,

without sacrificing Õ(
√
T ) regret in the non-strongly convex case. In all cases, we obtain results that adapt

to second-order parameters using only first-order information.



Appendix

7.A Proof of Theorem 7.8

We re-state Theorem 7.8 below for reference:

Theorem 7.8. Let A be an online linear optimization algorithm that outputs wt in response to gt. Suppose

W is a convex closed set of diameter D. Suppose A guarantees for all t and v̊:

t∑
i=1

〈g̃i, wi − v̊〉 ≤ ε+ ‖̊v‖A

√√√√ t∑
i=1

‖g̃i‖2?
(

1 + ln

(
‖̊v‖2tC
ε2

+ 1

))
+B‖̊v‖ ln

(
‖̊v‖tC

ε
+ 1

)
,

for constants A, B and C and ε independent of t. Then for all ẘ ∈W , Algorithm 13 guarantees

RT (ẘ) ≤
T∑
t=1

〈gt, xt − ẘ〉 ≤ O

(√
VT (ẘ) ln

TD

ε
ln(T ) + ln

DT

ε
ln(T ) + ε

)
,

where VT (ẘ) := ‖x0 − ẘ‖2 +
∑T
t=1 ‖g̃t‖2?‖xt − ẘ‖2 ≤ D2 +

∑T
t=1 ‖gt‖2?‖xt − ẘ‖2.

Proof. For any t, consider the random vector Xt that takes value xi for i ≤ t with probability proportional

to ‖g̃i‖2? and value x0 with probability proportional to 1. Make the following definitions/observations:

1. Zt := 1 +
∑t
i=1 ‖g̃i‖2? for all t, so that

VT (ẘ) = ‖x0 − ẘ‖2 +

T∑
t=1

‖g̃t‖2?‖xt − ẘ‖2 = ZTE[‖XT − ẘ‖2] .

2. xT = E[XT ] =
x0+

∑T
t=1 ‖g̃t‖

2
?xt

1+
∑T
t=1 ‖g̃t‖2?

.

3. σ2
t :=

‖xt−x0‖2+
∑t
i=1 ‖g̃i‖

2
?‖xi−xt‖

2

Zt
so that σ2

t = E[‖Xt − xt‖2], and σ2
TZT = ‖x0 − xT ‖2 +∑T

t=1 ‖g̃t‖2?‖xt − xT ‖2.

125
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To prove the theorem, we are going to show for any ẘ ∈W ,

RT (ẘ) ≤ O

[√
ZT ‖ẘ − xT ‖2 ln

TD

ε2
+ ln

DT

ε
ln(T ) +

√
ZTσ2

T ln
TD

ε
log(T )

]
, (7.6)

which implies the desired bound by a bias-variance decomposition: ZT ‖ẘ − xT ‖2 + ZTσ
2
T = ZTE[‖XT −

ẘ‖2] = VT (ẘ).

Observe that, by triangle inequality and the definition of dual norm, 〈gt, z〉 + ‖gt‖?SW (z) ≥ 〈gt, x〉 for

all z and x ∈ ΠW (z), with equality when z ∈W . Hence, we have

〈gt, xt − ẘ〉 ≤ 〈gt, zt − ẘ〉+ ‖gt‖?SW (zt)− ‖gt‖?SW (ẘ) ≤ 〈g̃t, zt − ẘ〉, (7.7)

for all ẘ ∈ W , where in the last inequality we used Proposition 5.5. Using this inequality with the regret

guarantee of A, we have

RT (ẘ) ≤
T∑
t=1

〈gt, xt − ẘ〉 ≤
T∑
t=1

〈g̃t, zt − ẘ〉 =

T∑
t=1

〈g̃t, wt − (ẘ − xT )〉+

T∑
t=1

〈g̃t, xt−1 − xT 〉

≤ O

‖ẘ − xT ‖
√√√√ T∑

t=1

‖g̃t‖2? ln
‖ẘ − xT ‖T

ε2
+ ‖ẘ − xT ‖ ln

‖ẘ − xT ‖T
ε

+ ε+

T∑
t=1

〈g̃t, xt−1 − xT 〉

= O

(√
ZT ‖ẘ − xT ‖2 ln

DT

ε2
+D ln

DT

ε

)
+ ε+

T∑
t=1

〈g̃t, xt−1 − xT 〉 .

Note that the first term is exactly what we want, so we only have to upper bound the second one. This is

readily done through Lemma 7.9 that immediately gives us the stated result.

Lemma 7.9. Under the hypotheses of Theorem 7.8, we have

T∑
t=1

〈g̃t, xt−1 − xT 〉 ≤M
√
ZTσT

√
1 + lnZT +K(1 + lnZT ),

where M = A

√
1 + ln

(
2D2TC

ε2 + 3TC
)

and K = 1 +B ln
(∑T

t=1 ‖gt‖?DT
C

ε + 2TC
)

.

Proof. We have that

t∑
i=1

〈g̃i, xi−1 − xt〉 −
t−1∑
i=1

〈g̃i, xi−1 − xt−1〉 =

〈
t∑
i=1

g̃i, xt−1 − xt

〉
.
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The telescoping sum gives us

T∑
t=1

〈g̃t, xt−1 − xT 〉 =

T∑
t=1

〈
t∑
i=1

g̃i, xt−1 − xt

〉
≤

T∑
t=1

∥∥∥∥∥
t∑
i=1

g̃i

∥∥∥∥∥
?

‖xt−1 − xt‖ .

So in order to bound
∑T
t=1〈g̃t, xt−1−xT 〉, it suffices to bound

∥∥∥∑t
i=1 g̃i

∥∥∥
?
‖xt−1−xt‖ by a sufficiently

small value. First we will tackle
∥∥∥∑t

i=1 g̃i

∥∥∥. To do this we recall our regret bound forA. Analogous to (7.7),

we have

〈gt, xt〉 ≥ 〈gt, zt〉+ ‖gt‖?SW (zt) + 〈g̃t, xt − zt〉

〈g̃t, zt〉 ≥ 〈gt, zt − xt〉+ ‖gt‖?‖zt − xt‖+ 〈g̃t, xt〉

≥ 〈g̃t, xt〉 .

Therefore, for any X ∈ R we have:

t∑
i=1

− ‖g̃i‖?D +

∥∥∥∥∥
t∑
i=1

g̃i

∥∥∥∥∥
?

X

≤
t∑
i=1

〈g̃i, xi − xi−1〉+

∥∥∥∥∥
t∑
i=1

g̃i

∥∥∥∥∥
?

X

≤
t∑
i=1

〈g̃i, zi − xi−1〉+

∥∥∥∥∥
t∑
i=1

g̃i

∥∥∥∥∥
?

X

=

t∑
i=1

〈g̃i, wi〉+

∥∥∥∥∥
t∑
i=1

g̃i

∥∥∥∥∥
?

X

≤ ε+ |X|A

√√√√ t∑
i=1

‖g̃i‖2?
(

1 + ln

(
|X|2tC
ε2

+ 1

))
+B|X| ln

(
|X|tC

ε
+ 1

)
,

where in the first inequality we have used the fact that the domain is bounded.

Dividing by X and solving for
∥∥∥∑t

i=1 g̃i

∥∥∥
?
, we have

∥∥∥∥∥
t∑
i=1

g̃i

∥∥∥∥∥
?

≤ ε

X
+A

√√√√ t∑
i=1

‖g̃i‖2?
(

1 + ln

(
|X|2tC
ε2

+ 1

))
+B ln

(
|X|tC

ε
+ 1

)
+

∑t
i=1 ‖g̃i‖?D

X
.
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Set X = ε+
∑t
i=1 ‖g̃i‖?D and overapproximate to conclude:

∥∥∥∥∥
t∑
i=1

g̃i

∥∥∥∥∥
?

≤ 1 +A

√√√√√√ t∑
i=1

‖g̃i‖2?

1 + ln

2D2
(∑t

i=1 ‖g̃i‖?
)2

tC

ε2
+ 3tC




+B ln

(∑t
i=1 ‖g̃i‖?DtC

ε
+ 2tC

)

≤M

√√√√ t∑
i=1

‖g̃i‖2? +K .

With this in hand, we have

T∑
t=1

〈g̃t, xt−1−xT 〉 ≤
T∑
t=1

∥∥∥∥∥
t∑
i=1

g̃i

∥∥∥∥∥
?

‖xt−1−xt‖ ≤M
T∑
t=1

√√√√ t∑
i=1

‖g̃i‖2?‖xt−1−xt‖+K

T∑
t=1

‖xt−1−xt‖ .

(7.8)

Now, we relate ‖xt − xt−1‖ to ‖xt − xt‖:

xt−1 − xt = xt−1 −
Zt−1xt−1 + ‖g̃t‖2?xt

Zt
=
‖g̃t‖2?
Zt

(xt−1 − xt) =
‖g̃t‖2?
Zt

(xt − xt) +
‖g̃t‖2?
Zt

(xt−1 − xt),

that implies

Zt(xt−1 − xt) = ‖g̃t‖2?(xt − xt) + ‖g̃t‖2?(xt−1 − xt),

that is

xt−1 − xt =
‖g̃t‖2?
Zt−1

(xt − xt) . (7.9)

Hence, we have

M

T∑
t=1

√√√√ t∑
i=1

‖g̃i‖2?‖xt − xt−1‖ ≤M
T∑
t=1

√
Zt
‖gt‖2?
Zt−1

‖xt − xt‖,

and

K

T∑
t=1

‖xt − xt−1‖ ≤ K
T∑
t=1

‖gt‖2?
Zt−1

‖xt − xt‖ ≤ KD
T∑
t=1

‖gt‖2?
Zt−1

.

Using CauchySchwarz inequality, we have

M

T∑
t=1

√
Zt
‖gt‖2?
Zt−1

‖xt − xt‖ ≤M

√√√√ T∑
t=1

‖g̃t‖2?
Zt−1

√√√√ T∑
t=1

Zt
Zt−1

‖g̃t‖2?‖xt − xt‖2 .
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So, putting together the last inequalities, we have

T∑
t=1

〈g̃t, xt−1 − xT 〉 ≤M

√√√√ T∑
t=1

‖g̃t‖2?
Zt−1

√√√√ T∑
t=1

Zt
Zt−1

‖g̃t‖2?‖xt − xt‖2 +KD

T∑
t=1

‖gt‖2?
Zt−1

.

We now focus on the the term
∑T
t=1

‖gt‖2?
Zt−1

that is easily bounded:

T∑
t=1

‖gt‖2?
Zt−1

=

T∑
t=1

(
‖g̃t‖2?
Zt

+
‖g̃t‖2?
Zt−1

− ‖g̃t‖
2
?

Zt

)

≤
T∑
t=1

(
‖g̃t‖2?
Zt

+
1

Zt−1
− 1

Zt

)

≤ 1

Z0
+

T∑
t=1

‖g̃t‖2?
Zt

≤ 1

Z0
+ log

ZT
Z0

= 1 + lnZT ,

where in the last inequality we used the well-known inequality
∑T
t=1

at
a0+

∑t
i=1 ai

≤ ln(1 +
∑T
t=1 at
a0

), ∀at ≥
0.

To upper bound the term
∑T
t=1

Zt
Zt−1
‖g̃t‖2?‖xt − xt‖2, observe that

σ2
TZT = ‖x0 − xT ‖2 +

T∑
t=1

‖g̃t‖2?‖xt − xT ‖2

= ‖x0 − xT ‖2 +

T−1∑
t=1

‖g̃t‖2?‖xt − xT ‖2 + ‖g̃T ‖2?‖xT − xT ‖2

= ZT−1(σ2
T−1 + ‖xT − xT−1‖2) + ‖g̃T ‖2?‖xT − xT ‖2

= ZT−1σ
2
T−1 + ‖g̃T ‖2?

(
1 +
‖g̃T ‖2?
ZT−1

)
‖xT − xT ‖2

= ZT−1σ
2
T−1 + ‖g̃T ‖2?

ZT
ZT−1

‖xT − xT ‖2,

where the third equality comes from bias-variance decomposition and the fourth one comes from (7.9).

Hence, we have
T∑
t=1

Zt
Zt−1

‖g̃t‖2?‖xt − xt‖2 =

T∑
t=1

(σ2
tZt − σ2

t−1Zt−1) ≤ σ2
TZT .

Putting all together, we have the stated bound.
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