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Abstract

We provide online convex optimization algorithms that guarantee improved full-
matrix regret bounds. These algorithms extend prior work in several ways. First,
we seamlessly allow for the incorporation of constraints without requiring unknown
oracle-tuning for any learning rate parameters. Second, we improve the regret
analysis of the full-matrix AdaGrad algorithm by suggesting a better learning rate
value and showing how to tune the learning rate to this value on-the-fly. Third, all
our bounds are obtained via a general framework for constructing regret bounds
that depend on an arbitrary sequence of norms.

1 Introduction

This paper provides new algorithms for online learning, which is a popular problem formulation
for modeling streaming and stochastic optimization [Zinkevich, 2003, Cesa-Bianchi and Lugosi,
2006, Shalev-Shwartz, 2011, McMahan, 2014, Hazan, 2019]. Online learning is a game of T rounds
between an algorithm and the environment. In each round, the algorithm first chooses a point wt
in some domain W ⊂ Rd, after which the environment presents the learner with a loss function
`t : W → R. Performance is measured by the regret, which is a function of some benchmark point
ẘ: RT (ẘ) =

∑T
t=1 `t(wt)− `t(ẘ).

In order to make the problem tractable, we will assume that each `t is convex and W ⊂ Rd is a
convex domain, which is often called online convex optimization. Now, if we let gt be an arbitrary
subgradient of `t at wt, we have:

RT (ẘ) ≤
T∑
t=1

〈gt, wt − ẘ〉

Because of this fact, for the rest of this paper we consider exclusively the case of linear losses and
take

∑T
t=1〈gt, wt − ẘ〉 as the definition of RT (ẘ). Well-known lower bounds [Abernethy et al.,

2008] tell us that even if the environment is restricted to ‖gt‖2 ≤ 1 and ‖ẘ‖2 ≤ 1, no algorithm
can guarantee regret better than O(

√
T ) in all scenarios, and this bound is in fact obtained by online

gradient descent [Zinkevich, 2003]. In order to go beyond this minimax result, there is a large body
of work on designing adaptive algorithms [Auer et al., 2002, Hazan et al., 2008, Duchi et al., 2010,
McMahan and Streeter, 2010, 2012, Foster et al., 2015, Orabona, 2014, Orabona and Pál, 2016, Foster
et al., 2018, Jun and Orabona, 2019, Kempka et al., 2019, van der Hoeven, 2019, Mhammedi and
Koolen, 2020]. Many of these prior algorithms obtain bounds like:

RT (ẘ) ≤ ‖ẘ‖2

√√√√ T∑
t=1

‖gt‖22 (1)
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where ‖ · ‖2 is the standard 2-norm. This type of bound is appealing: in the worst-case we never do
worse than the minimax optimal rate, but in many cases we can do much better. For example, if ‖ẘ‖2
is small (intuitively, the benchmark point is “simple”), or if the ‖gt‖2 values are small (intuitively,
the losses are “simple”), then we obtain low regret. The challenge in obtaining these kinds of bounds
lies in the fact that the values that appear in the regret guarantee are unknown to the algorithm and so
intuitively the algorithm must somehow learn about them on-the-fly.

For a more nuanced form of adaptive bound, one can look to the full-matrix bounds. A prototypical
such bound takes the form:

RT (ẘ) ≤ Õ


√√√√r

T∑
t=1

〈gt, ẘ〉2

 (2)

where here r is the rank of the subspace spanned by the gt. Such a bound may be desirable because it
in some sense “ignores irrelevant directions” in the gt by projecting them all along ẘ. Such bounds
are available in the prior work of Mhammedi and Koolen [2020], Kotłowski [2019], Cutkosky and
Orabona [2018] for the unconstrained setting when W = Rd. For the constrained setting, to the
best of our knowledge such a bound is only available in Koren and Livni [2017] subject to tuning a
learning rate optimally using prior knowledge of

∑T
t=1〈gt, ẘ〉2, which is unlikely to be available. In

this paper we provide the first algorithm the achieve (2) for general convex domains W rather than
entire vector spaces.

Next, we provide a refined analysis of the regret of the full-matrix AdaGrad algorithm [Duchi et al.,
2010]. Prior analysis of full-matrix AdaGrad yields a regret bound that is never better than (1)1.
Nevertheless, full-matrix AdaGrad is empirically successful, suggesting that something is missing
from the analysis. We posit that the missing ingredient is a suboptimal tuning of the learning rate,
and show that with oracle tuning (which is unavailable apriori) one can obtain the regret bound:

RT (ẘ) ≤ Õ


√√√√√〈ẘ,

√√√√ T∑
t=1

gtg>t ẘ

〉
tr

√√√√ T∑
t=1

gtg>t

 (3)

We provide an interpretation of this bound suggesting that it allows for small regret when
∑T
t=1 gtg

>
t

is approximately low-rank, and develop an algorithm that obtains this bound with requiring any tuning.
Intriguingly, the three regret bounds (1), (2), and (3) are all incomparable - there are sequences of gt
such that any one of them might be significantly better than the others.

In order to obtain these results, we develop a general algorithm that takes a sequence of increasing
norms ‖ · ‖0, . . . , ‖ · ‖T−1 and obtains regret

RT (ẘ) ≤ Õ

‖ẘ‖2T−1

√√√√ T∑
t=1

‖gt‖2t−1,?

 (4)

Here ‖ · ‖t,? is the dual norm to ‖ · ‖t. The norms ‖ · ‖t may be generated on-the-fly (e.g. ‖ · ‖t can
depend on gt). Further, our algorithm can incorporate arbitrary convex domains W . Prior adaptive
algorithms have typically required specific forms of W , such as being an entire vector space or having
bounded diameter, and have often focused on a single norm.

This paper is organized as follows: in Section 2, we lay out our setting and introduce some background
from the literature. In Section 3, we describe our our intermediate result achieving the bound (4).
Then, in Sections 4 and 5, we show how to use our approach to achieve bounds (2) and (3).

2 Preliminaries

2.1 Notation and Setup

We use ‖ · ‖0, . . . , ‖ · ‖T−1 to indicate an arbitrary sequence of T potentially different norms. To
avoid confusion between the Lp norm and the pth element of a sequence of norms, we denote the Lp

1Note that the prior bound for the diagonal AdaGrad algorithm is different and can improve over (1).
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norm using a bold font: ‖ · ‖p. For a symmetric positive-definite matrix M , the norm defined by M
is denoted by ‖x‖M =

√
x>Mx. We will use the notation Gt =

∑t
i=1 gig

>
i as a shorthand for the

sum of the outer product of the loss vectors gt. Finally, the dual of a norm is ‖x‖? = sup‖y‖≤1〈y, x〉.

We restrict our attention to those norms such that the function 1
2‖ · ‖

2 is σ-strongly-convex with
respect to the same norm ‖ · ‖ for some σ. A function f : W → R is σ-strongly-convex if for all x
and y and g ∈ ∂f we have f(y) ≥ f(x) + 〈g, y − x〉+ σ

2 ‖x− y‖
2.

We will assume W is a convex set for which it is possible to compute the projection operation
Π(x) = argminw∈W ‖w − x‖ for any norm ‖ · ‖ we are interested in. We will also usually require
‖gt‖? ≤ 1 for the norms we consider. We recall for convenience here that ‖g‖2M,? = 〈g,M−1g〉
Finally, in order to ease exposition we have suppressed many constants and occasionally a logarithmic
factor in our main presentation. We provide full characterizations of all our results including constant
factors in the Appendix along with any proofs not in the main text.

In the next subsections, we describe some material from prior literature we will use to construct our
algorithms.

2.2 Follow-the-Regularized-Leader

Follow-the-Regularized-Leader (FTRL) [Shalev-Shwartz, 2007] is one of the most successful abstrac-
tions for designing online convex optimization algorithms (see McMahan [2014] for a detailed sur-
vey). FTRL algorithms produces w1, . . . , wT through the use of regularizer functions ψ0, . . . , ψT−1.
Specifically, wt+1 is given by:

wt+1 = argmin
w∈W

ψt(w) +

t∑
i=1

〈gi, w〉

The following result characterizes the regret of FTRL:

Theorem 1 (Adapted from McMahan [2014] Theorem 1). Suppose each ψt is σt-strongly-convex
with respect to a norm ‖ · ‖t for some σt, and ψt+1(w) ≥ ψt(w) for all t and all w ∈ W . Further
suppose infw∈W ψ0(w) = 0. Then the regret of FTRL is bounded by:

RT (ẘ) ≤ ψT−1(ẘ) +
1

2

T∑
t=1

‖gt‖2t−1,?

σt−1

where recall we define ‖g‖? = sup‖x‖≤1〈g, x〉 for any seminorm ‖ · ‖.

The FTRL algorithm template has been used to great effect through clever choices of regularizer
functions ψt. However, most prior adaptive algorithms based on FTRL (e.g. [Duchi et al., 2010,
McMahan and Streeter, 2010]) require tuning some learning rate parameter η to the value of ‖ẘ‖.
Unfortunately, the optimal value of η is unknown a priori (and maybe even a posteriori) because we
do not know what ‖ẘ‖2 is.

2.3 Parameter-Free Algorithms

In an effort to fix the need to tune learning rates, much work has gone into designing “parameter-free”
algorithms that can adapt to unknown values of ẘ [McMahan and Streeter, 2012, Orabona, 2013,
Orabona and Pál, 2016, Foster et al., 2017a, Cutkosky and Boahen, 2017, Foster et al., 2018, Cutkosky
and Orabona, 2018, Kempka et al., 2019]. These algorithms make use of a known bound on the norm
of gt in order to achieve adaptivity to ‖ẘ‖. We will make use of the following recent bound (which is
optimal up to constants and quantities inside logarithms):

Theorem 2 (Adapted from Cutkosky and Sarlos [2019] Theorem 2). For any user-specified values
ε > 0 and 0 ≤ Z ≤ 1, there exists an online convex optimization algorithm with domain W = R
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that runs in time O(1) per update such that if |gt| ≤ 1 for all t, the regret is bounded by:

RT (ẘ) =

T∑
t=1

gt(wt − ẘ) ≤ O

ε+ |ẘ|max


√√√√√√1 +

∑T
t=1 g

2
t

Z
log

1 +

(
1+

∑T
t=1 g

2
t

Z

) 1
2 + Z

2 |ẘ|

ε

,

log

1 +

(
1+

∑T
t=1 g

2
t

Z

) 1
2 + Z

2

|ẘ|

ε



 (5)

In order to ease notation in our results, we will just set Z = 1 and drop the Z dependency in Theorem
2 from all bounds in the paper. For completeness, we provide a proof of this result in Appendix F.

3 Adapting to Varying Norms

In this Section, we show our how to achieve the regret bound (4) in arbitrary convex domains W .
We decompose the problem into three stages: first, we use FTRL to obtain an regret bound with a
very poor dependence on ‖ẘ‖T−1. Then, we will show how to combine this with a one-dimensional
parameter-free algorithm to obtain the desired bound in the case that W is an entire vector space.
Finally, we will show how to constrain our algorithm to arbitrary convex W . Although each of our
individual steps is pleasingly straightforward, the final result is surprisingly powerful, as it will allow
us to easily obtain our new full-matrix bounds.

Our FTRL algorithm is reminiscent of prior adaptive methods, but we enforce a special time varying
constraint. This will make the algorithm much worse on its own, but allow for an overall improvement
later. Specifically, suppose we have a sequence of norms ‖ · ‖0, . . . ‖ · ‖T−1 such that ‖x‖t ≥ ‖x‖t−1,
and 1

2‖·‖
2
t is σ-strongly-convex with respect to ‖·‖t for all t and x. Consider FTRL with regularizers:

ψt(w) =

{
1√
σ
‖w‖2t

√
1 +

∑t
i=1 ‖gi‖2i−1,? if ‖w‖t ≤ 1

∞ if ‖w‖t > 1
(6)

Then we have the following corollary of Theorem 1:

Lemma 3. Let W be a real vector space and ‖ · ‖1, . . . , ‖ · ‖T are an increasing sequence of norms
on W such that 1

2‖ · ‖t is σ-strongly-convex with respect to ‖ · ‖t. Suppose we run FTRL with
regularizers given by (6), and with gt satisfying ‖gt‖t−1,? ≤ 1 for all t. Then ‖wt‖t−1 ≤ 1 for all t,
and for all ẘ with ‖ẘ‖T−1 ≤ 1, the regret of FTRL is bounded by

RT (ẘ) ≤ 1√
σ

‖ẘ‖2T−1

√√√√1 +

T−1∑
t=1

‖gt‖2t−1,? +

√√√√ T∑
t=1

‖gt‖2t−1,?

 .

Note that this bound is actually much worse than one might typically expect, as the outputs are
constrained to smaller and smaller balls over the course of the algorithm. Counterintuitively, this
property is crucial for improved results in the next section.

3.1 Unconstrained Domains

Now, with Lemma 3 in hand, we will proceed to build an algorithm that achieves the bound (4) in the
unconstrained setting. Our technique is based on the dimension-free to one-dimensional optimization
reduction proposed by Cutkosky and Orabona [2018], taking into account the particular dynamics of
our FTRL algorithm. The pseudocode for this technique is presented in Algorithm 1 below.
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Algorithm 1 Unconstrained Varying Norms Adaptivity
Input: sequence of norms ‖ · ‖0, . . . , ‖ · ‖T−1, real vector space W , strong-convexity parameter
σ.
Instantiate one-dimensional parameter-free online learning algorithm A from Theorem 2.
Set ψ0(x) = 1√

2σ
‖x‖20.

Set x1 = argminw∈W ψ0(w).
for t = 1 . . . T do

Get yt ∈ R from A.
Output wt = ytxt and get gt.

Set ψt(x) =

{
1√
2σ
‖x‖2t

√
1 +

∑t
i=1 ‖gi‖2i−1,? if ‖x‖t ≤ 1

∞ if ‖x‖t > 1

Set xt+1 = argminw∈W ψt(w) +
∑t
i=1〈gi, w〉.

Send st = 〈gt, xt〉 to A as the tth loss.
end for

Lemma 4. Under the assumptions of Lemma 3, for any ẘ ∈ W (recall we assume W is an entire
vector space in Lemma 3), the regret of Algorithm 1 is bounded by:

RT (ẘ) ≤ O

ε+
2‖ẘ‖T−1

min(1,
√
σ)

max


√√√√1 +

T∑
t=1

‖gt‖2t−1,? log

(
1 +

∑T
t=1 ‖gt‖2t−1,?‖ẘ‖T−1

ε

)
,

log

(
1 +

∑T
t=1 ‖gt‖2t−1,?‖ẘ‖T−1

ε

))]

3.2 Adding Constraints

Algorithm 1 provides a method for obtaining the bound (4) when W is an entire vector space, so in
this section we show how to fix the algorithm so that W may be an arbitrary convex domain. We do
this by again appealing to a technique from [Cutkosky and Orabona, 2018]. This time, we use their
Theorem 3, which provides a way to produce constrained algorithms from unconstrained algorithms.
The original result considers only the case of a fixed norm and is applied to achieve bounds like (1).
We modify the technique to consider varying norms as well. The algorithm is presented in Algorithm
2 below, and the analysis achieving (4) is in Theorem 5.

Algorithm 2 Varying Norms Adaptivity
Input: Convex domain W in a real vector space V .
Define Πt(v) = argminw∈W ‖v − w‖t−1.
Define St(v) = ‖v −Πt(v)‖t−1.
Initialize Algorithm 1 with domain V using the algorithm of Theorem 2 as the base learner.
for t = 1 . . . T do

Get tth output vt ∈ V from Algorithm 1.
Output wt = Πt(vt), and get loss gt.
Define `t(v) = 1

2 (〈gt, v〉+ ‖gt‖t−1,?St(v)).
Let ĝt ∈ ∂`t(vt), and send ĝt to Algorithm 1 as the tth loss.

end for

Theorem 5. Each output wt of Algorithm 2 lies in W , and the regret for any ẘ ∈W is at most:

RT (ẘ) ≤ O

ε+
‖ẘ‖T−1

min(1,
√
σ)

max


√√√√1 +

T∑
t=1

‖gt‖2t−1,? log

(
1 +

∑T
t=1 ‖gt‖2t−1,?‖ẘ‖T−1

ε

)
,

log

(
1 +

∑T
t=1 ‖gt‖2t−1,?‖ẘ‖T−1

ε

))]
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4 Full-Matrix Bounds

The results of the previous section operate with arbitrary norms and in potentially infinite dimensional
spaces. In this section and the next, we will specialize to the case W ⊂ Rd, and show how to
obtain so-called “full-matrix” or “preconditioned” regret bounds. In this section, we will consider the
full-matrix regret bound given by (2).

Up to a factor of
√

log(T ), this bound is achieved in the case where W is an entire vector space
by Mhammedi and Koolen [2020], and similar bounds utilizing various extra assumptions or worse
log factors are obtained by Cutkosky and Orabona [2018], Kotłowski [2019], Cesa-Bianchi et al.
[2005]. When W is not an entire vector space, it seems harder to achieve this bound. However, some
progress has been made in certain settings. For example, when W is the probability simplex, Foster
et al. [2017b] achieves a bound

√
rT , which adapts automatically to r. For more general W , Koren

and Livni [2017] achieves the desired result if their algorithm is tuned with oracle knowledge of∑T
t=1〈gt, ẘ〉2.

To appreciate some of the subtleties of incorporating arbitrary constraints W , let us consider one
straw-man solution. We might be tempted to start with the algorithm of Mhammedi and Koolen [2020]
that achieves (2) in the unconstrained setting, and then try to add constraints through direct application
of the unconstrained-to-constrained reduction proposed in Cutkosky and Orabona [2018], which is
also the key component of our Algorithm 2. Unfortunately, this might fail because the alterations to
the gradients necessary to incorporate the constraints may destroy the original regret bound. If the
original losses are gt, and the losses supplied to the unconstrained algorithm after performing the

unconstrained-to-constrained transformation are g̃t, the final regret will be Õ
(√

r̃
∑T
t=1〈g̃t, ẘ〉2

)
,

where r̃ is the rank of the g̃t. It is not clear what the relationship is between this quantity and the

desired bound Õ
(√

r
∑T
t=1〈gt, ẘ〉2

)
. The reduction allows us to guarantee ‖g̃t‖? ≤ 2‖gt‖? for

any given norm ‖·‖, but this does not sufficiently elucidate the problem. For example, even if we knew
the norm ‖ · ‖GT

in advance and ensured ‖g̃t‖G−1
T
≤ 2‖gt‖G−1

T
, applying Cauchy-Schwarz would

yield a regret of Õ
(
‖ẘ‖GT

√
r̃
∑T
t=1 ‖gt‖2G−1

T

)
= Õ(r‖ẘ‖GT

), which has the wrong dependence
on the rank r.

Perhaps surprisingly given this difficulty, a straightforward application of Theorem 5 allows us to
obtain (2), up to a factor of log(T ). Note that this is

√
log(T ) worse than Cutkosky and Orabona

[2018], but we are able to handle any convex domain. Intuitively, one can view our Algorithm 1
as providing a specially-treated unconstrained regret bound that is designed specifically to work
around the difficulties in naively applying the unconstrained-to-constrained reduction to an arbitrary
unconstrained algorithm.

The key idea in our approach is that the norms ‖ · ‖t used by Algorithm 2 need not be specified
ahead of time: so long as ‖ · ‖t depends only on g1, . . . , gt, it is still possible to run the algorithm.
Next, observe that

∑T
t=1〈gt, ẘ〉2 can be viewed as ‖ẘ‖2GT

, where we recall that ‖ · ‖GT
is the norm

induced by GT : ‖x‖2GT
= x>GTx. Inspired by these observations, our approach is to run Algorithm

2 using norms ‖ · ‖t = ‖ · ‖Gt . The algorithm is analyzed in Theorem 6 below.

Theorem 6. Suppose gt satisfies ‖gt‖ ≤ 1 for all t where ‖ · ‖ is any norm such that 1
2‖ · ‖

2 is
σ-strongly convex with respect to ‖ · ‖. Let Gt =

∑t
i=1 gig

>
i and let r be the rank of GT . Suppose

we run Algorithm 2 with ‖x‖2t = ‖x‖2 + x>(I + Gt)x, where I is the identity matrix. Then we
obtain regret RT (ẘ) bounded by:

O

√‖ẘ‖2 + ‖ẘ‖22 +
∑T
t=1〈gt, ẘ〉2

min(σ, 1)
max

log

1 +
r log(T )

√
‖ẘ‖2 + ‖ẘ‖22 +

∑T
t=1〈gt, ẘ〉2

ε

 ,

√√√√√r log(T ) log

1 +
r log(T )

√
‖ẘ‖2 + ‖ẘ‖22 +

∑T
t=1〈gt, ẘ〉2

ε


+ ε
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Proof. We have ‖x‖2t = ‖x‖2 + x>(I + Gt)x = ‖x‖2 + ‖x‖22 +
∑t
i=1〈gt, x〉2, so that ‖ · ‖t is

increasing in t. Further, since ‖x‖t−1 ≥ ‖x‖, we must have ‖gt‖t−1,? ≤ 1 for all t. Next, observe
that since ‖gt‖? ≤ 1, we have

‖x‖2 + ‖x‖22 +

t−1∑
i=1

〈gi, x〉2 ≥ ‖x‖22 +

t∑
i=1

〈gi, x〉2 = x>(I +Gt)x

Therefore, we have ‖gt‖t−1,? ≤ g>t (I +Gt)
−1gt. Now recall that for any PSD matrix M , 1

2x
>Mx

is 1-strongly convex with respect to the norm
√
x>Mx. Therefore, by Lemma 8 (provided in

supplement), we have that 1
2‖x‖

2
t is min(σ, 1)-strongly convex with respect to ‖ · ‖t so that we have

satisfied all the hypotheses of Theorem 5. Finally, before we apply Theorem 5, we need to analyze

T∑
t=1

‖gt‖2t−1,? ≤
T∑
t=1

g>t (I +Gt)
−1gt ≤ log

(
det(I +

∑t
i=1 gtg

>
t )

det(I)

)
≤ rank(GT ) log(T + 1)

where we have applied Lemma 11 of Hazan et al. [2007]. The result now follows from Theorem
5.

Note that for concreteness, if we set ‖ · ‖ = ‖ · ‖2 in the above bound, then the norms ‖ · ‖t become
the familiar matrix-based norm ‖x‖t =

√
x>(2I +Gt)x. We have opted to leave the more general

formulation in place to allow for gt that are not bounded in the L2 norm.

5 Full-Matrix Adagrad with Oracle Tuning

In this section we consider a different kind of full-matrix bound inspired by the full-matrix AdaGrad
algorithm [Duchi et al., 2010]. Full-matrix AdaGrad can be described as FTRL using regularizers:2

ψt(x) =
1

η
〈x, (I +Gt)

1/2, x〉

where η is a scalar learning rate parameter that must be set by the user. (I + Gt)
1/2 indicates the

symmetric positive-definite matrix square-root of I +Gt, which exists since I +Gt is a symmetric
positive-definite matrix. This algorithm is empirically very successful, in spite of the computational
overhead coming from manipulating the d×d matrix Gt. Indeed, much work has gone into providing
approximate versions of this algorithm that reduce the computation load while still retaining some
performance benefits [Gupta et al., 2018, Agarwal et al., 2019, Chen et al., 2019]. Prior analyses
of full-matrix AdaGrad considers domains W with finite diameter D = supx,y∈W ‖x − y‖2, and
suggests setting η = O(D) to obtain a regret bound of:

RT (ẘ) ≤ O(Dtr(G1/2
T ))

However, by linearity of trace and concavity of square root, we have:

Dtr(G1/2
T ) ≥ D

√
tr(GT ) = D

√√√√ T∑
t=1

‖gt‖22

The bound RT (ẘ) ≤ D
√∑T

t=1 ‖gt‖22 can be achieved by simple (and fast) online gradient descent

with a scalar learning rate, wt+1 = wt − Dgt√∑t
i=1 ‖gt‖22

, so the prior regret bound of full-matrix

AdaGrad does not appear to show any benefit gained by the extra matrix computations. This poses a
mystery: since the actual algorithm is so effective, it seems we are missing something in the analysis.
We propose a possible explanation for this quandary. The main idea is that, in practice, the theoretical
guidance to set η = O(D) is rarely used. Instead, η is tuned via manually checking different values
to find which is empirically best. Thus, if we could show that full-matrix AdaGrad achieves gains
with an oracle-tuning for η, this might explain the improved performance in practice.

2In Duchi et al. [2010], this version of AdaGrad is called the Primal-Dual update version.
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To this end, recall that from Theorem 1 we can write the regret of full-matrix AdaGrad as:

RT (ẘ) ≤ O

(
ẘ>(I +GT )1/2ẘ

η
+ η

T∑
t=1

g>t (I +Gt−1)−1/2gt

)
≤ O

(
ẘ>G

1/2
T ẘ

η
+ ηtr(G1/2

T )

)

where the second inequality is due to Lemma 10 of Duchi et al. [2010], and we have ignored
the dependence on I for simpler exposition. Then it is clear that with the optimal tuning of η =

O

(√
〈ẘ,G1/2

T ẘ〉
tr(G1/2

T )

)
, we obtain regret bound of (3). In order to appreciate the potential of this bound,

let us construct a particular sequence of gts and evaluate the bound. We will compare the bound (3)
to both (2) and (1). Our example will illustrate that (3) can in some sense adapt to the case that GT is
full-rank but “approximately low rank”, while the analysis of the full-matrix algorithm in Section 4
does not obviously allow for such behavior.

Let v1, . . . , vd be an orthonormal basis for the d-dimensional vector space containing W . Assume d
is a perfect square and T = 2d+ 2k

√
d for some integer k. For the first d rounds, gt = vt and for

the second d rounds gd+t = −vt. For the remaining rounds, we write t = i+ j
√
d+ 2d for j ∈ Z

and 1 ≤ i ≤
√
d, and set gt = 1√

d
vd +

(
(−1)j

√
1− 1

d

)
vi. Intuitively, the losses are cycling with

alternating signs through the first
√
d basis vectors, but always maintain a small positive component

in the direction of vd. Notice that since T − 2d is a multiple of 2
√
d, the alternating signs imply that∑T

t=1 gt is a positive scalar multiple of vd. Consider ẘ = −vd. Then, we have:

‖ẘ‖2

√√√√ T∑
t=1

‖gt‖22 = O(
√
T )

√√√√rank(GT )

T∑
t=1

〈gt, wt〉2 = O(
√
T )

√
〈ẘ, G1/2

T ẘ〉tr(G1/2
T ) = O

(√
T/d1/4 +

√
dT

)

In this case, the trace of
√∑T

t=1 gtg
>
t captures the fact that even though the gt span d dimensions,

they are approximately contained in
√
d dimensions. This allows bound (3) to perform much better

than either of the other bounds. In contrast, if the example is modified so that the first 2d rounds
only cycle between the first

√
d basis vectors, we would have rank(GT ) =

√
d and so the full-matrix

bound (2) is the best. Finally, if we increase the component on vd in each round to, for example, 1√
2

,
then the bound (1) is the smallest. Therefore none of the bounds uniformly dominates the others.

To gain a little more intuition for what the bound (3) means, let us investigate the worst-case
performance of the bounds (1), (2) and (3) over all ẘ with ‖ẘ‖2 ≤ 1. To this end, write Teff =∑T
t=1 ‖gt‖22 and let λmax = sup‖ẘ‖≤1

∑T
t=1〈gt, ẘ〉2. Then we clearly have (1) is O(

√
Teff) while

the bound (2) is at most O(
√
rλmax). On the other hand, by Cauchy-Schwarz inequality we have

tr(G1/2
T ) ≤

√
reffTeff where reff ≤ r is some “effective rank” that might be much lower than the true

rank r. With this notation, we have that the bound (3) is at most (λmaxreffTeff)
1/4. Thus, we see that

the new bound is at most the geometric mean of the bounds (1) and (2), but could potentially be much
lower if the effective rank reff is smaller than r.

5.1 Achieving the Optimal Full-Matrix AdaGrad Bound

Now that we see there is some potential advantage to a bound like (3), we will show how to obtain
the bound without manually tuning η using our framework. The approach is very similar to how we
obtained the bound (2): we run Algorithm 2 and in round t we set ‖ · ‖t = ‖ · ‖

G
1/2
t

. With this setting,
the desired bound is an almost immediate consequence of Theorem 5:

8



Theorem 7. Suppose W ⊂ Rd and gt satisfies ‖gt‖2 ≤ 1 for all t. Let Gt =
∑t
i=1 gig

>
i . Define

‖ · ‖t be ‖x‖2t = x>(I +Gt)
1/2x. Then the regret of Algorithm 2 using these norms is bounded by:

RT (ẘ) ≤ Õ

(√
(‖ẘ‖22 + ẘ>G

1/2
T ẘ)tr

(
G

1/2
T

))

where the Õ notation hides a logarithmic dependency on tr
(
G

1/2
T

)√
‖ẘ‖22 + ẘ>G

1/2
T ẘ.

This Theorem recovers the desired bound (3) up to log factors. Moreover, it is possible to interpret
the operation of the algorithm as in some rough sense “learning the optimal learning rate” required
for the original AdaGrad algorithm to achieve this bound.

Proof. Observe that since ‖gt‖2 ≤ 1, we have ‖gt‖t−1,? = ‖gt‖(I+Gt−1)−1/2 ≤ ‖gt‖2 ≤ 1 so that
the hypotheses of Theorem 5 are satisfied. In order to complete the analysis we need only calculate:

T∑
t=1

‖gt‖2t−1,? =

T∑
t=1

g>t (I +Gt−1)−1/2gt ≤
T∑
t=1

g>t G
−1/2
t gt ≤ 2tr(G1/2

T )

Here, in the first inequality, we mildly abuse notation to indicate the pseudo-inverse ofG1/2
t asG−1/2

t−1 .
The inequalities then follow from Duchi et al. [2010] Lemmas 9 and 10.

Finally, observe that (I +GT )1/2 � I +G
1/2
T , and apply Theorem 5 to obtain the result.

6 Conclusion

We have introduced online linear optimization algorithms that achieve new full-matrix bounds. We
generalizing prior work to arbitary domains, and we provide an improvement on the full-matrix
AdaGrad bound. Our results are consequences of a general method for constructing regret bounds in
terms of arbitrary sequences of norms.

Our results raise several interesting open questions. Firstly, our full-matrix regret bound seems to
be a factor of

√
log(T ) worse than the best rate in the unconstrained case, suggesting that there is

some room to improve our algorithm or analysis. Second, our present results seem restricted to using
FTRL algorithms with regularizers centered at the origin. If instead it was possible for the center
to vary of the course of the algorithm, one might hope achieve bounds similar to those obtained by
[van Erven and Koolen, 2016] in a more general or more efficient manner. Finally, note that in the
unconstrained setting, Cutkosky and Sarlos [2019] achieves a bound that appears to dispense with
the
√
r factor in (2). Their bound holds only if the gradients gt satisfy a certain “non-randomness”

condition. Although our bounds hold unconditionally, this raises the interesting question of whether
their conditional bound can be achieved in the constrained setting.

Broader Impact

Our work introduces new algorithms and analysis for generic optimization problems. Our contribution
is entirely mathematical, and we do not anticipate it engendering negative ethical concerns.
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A Appendix Organization

This appendix is organized as follows: in Section B, C and D we provide the missing proofs of Theorems 3, 4
and 5. In Section E we provide detailed version of Theorems 6 and 7 containing all constants. In Section F we
provide a version of Theorem 2 with all constants for completeness.

B Proof of Theorem 3

In this section we provide the missing proof of Theorem 3, restated below:

Lemma 3. Let W be a real vector space and ‖ · ‖1, . . . , ‖ · ‖T are an increasing sequence of norms on W such
that 1

2
‖ · ‖t is σ-strongly-convex with respect to ‖ · ‖t. Suppose we run FTRL with regularizers given by (6), and

with gt satisfying ‖gt‖t−1,? ≤ 1 for all t. Then ‖wt‖t−1 ≤ 1 for all t, and for all ẘ with ‖ẘ‖T−1 ≤ 1, the
regret of FTRL is bounded by

RT (ẘ) ≤ 1√
σ

‖ẘ‖2T−1

√√√√1 +

T−1∑
t=1

‖gt‖2t−1,? +

√√√√ T∑
t=1

‖gt‖2t−1,?

 .

Proof. To begin, observe that since ψt(w) = ∞ for ‖w‖t > 1, the definition of the FTRL update implies
‖wt+1‖t ≤ 1. So now it remains only to show the regret bound.

By the σ-strong-convexity of 1
2
‖ · ‖2t , we have that ψt is

√
2σ + 2σ

∑t
i=1 ‖gi‖2i−1,?-strongly convex with

respect to ‖ · ‖t. Further, since ‖ · ‖t is increasing with t, ψt is increasing as well. Therefore direct application
of Theorem 1 yields:

RT (ẘ) ≤ ψT−1(ẘ) +

T∑
t=1

‖gt‖2t−1,?

2
√
σ + σ

∑t−1
i=1 ‖gi‖2i−1,?

Now we recall the following consequence of concavity of the square root function (see Auer et al. [2002], Duchi
et al. [2010] for proofs): for any sequence non-negative numbers x1, . . . , xT we have

T∑
t=1

xt√∑t
i=1 xt

≤ 2

√√√√ T∑
t=1

xt

Using this observation, and the fact that ‖gt‖t−1,? ≤ 1, we have

T∑
t=1

‖gt‖2t−1,?

2
√
σ + σ

∑t−1
i=1 ‖gi‖2i−1,?

≤
T∑
t=1

‖gt‖2t−1,?

2
√

2σ
√∑t

i=1 ‖gi‖2i−1,?

≤

√√√√ 1

σ

T∑
t=1

‖gt‖2t−1,?

And now the final bound follows by inserting the definition of ψT−1.

C Proof of Theorem 4

In this section we provide the missing proof of Theorem 4, restated below:

Lemma 4. Under the assumptions of Lemma 3, for any ẘ ∈W (recall we assume W is an entire vector space
in Lemma 3), the regret of Algorithm 1 is bounded by:

RT (ẘ) ≤ O

ε+
2‖ẘ‖T−1

min(1,
√
σ)

max


√√√√1 +

T∑
t=1

‖gt‖2t−1,? log

(
1 +

∑T
t=1 ‖gt‖2t−1,?‖ẘ‖T−1

ε

)
,

log

(
1 +

∑T
t=1 ‖gt‖

2
t−1,?‖ẘ‖T−1

ε

))]
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Proof. First, by Lemma 3, we have ‖xt‖t−1 ≤ 1, so that 〈gt, xt〉 ≤ ‖gt‖t−1,?‖xt‖t−1 ≤ ‖gt‖t−1,? ≤ 1.
Next, we use an argument from Cutkosky and Orabona [2018]:

T∑
t=1

〈gt, wt − ẘ〉 =

T∑
t=1

〈gt, ytxt − ẘ〉

=

T∑
t=1

〈gt, xt〉(yt − ‖ẘ‖T−1) + ‖ẘ‖T−1

T∑
t=1

〈gt, xt − ẘ/‖ẘ‖T−1〉

= R1D
T (‖ẘ‖T−1) +RFTRLT (ẘ/‖ẘ‖T−1)

where RFTRLT is the regret of FTRL. Since
∥∥∥ ẘ
‖ẘ‖T−1

∥∥∥
T−1

= 1, Lemma 3 tells us:

RFTRLT (ẘ/‖ẘ‖T−1) ≤ 2√
σ

√√√√1 +

T−1∑
t=1

‖gt‖2t−1,?

Now it remains to use the regret bound on A. Observe that |st| ≤ ‖gt‖t−1,? ≤ 1, so we can apply the regret
bound of Theorem 2. Specifically, if we pull the constants from Theorem 11, we obtain:

RT (ẘ) ≤ ε+ 2‖ẘ‖T−1 max


√√√√(3 + 3

T∑
t=1

‖gt‖2t−1,?

)
log

(
e+
‖ẘ‖T−1(6 + 11

∑T
t=1 ‖gt‖2t−1,?)

ε

)
,

2 log

(
e+
‖ẘ‖T−1(6 + 11

∑T
t=1 ‖gt‖

2
t,−1?)

ε

)]

+
2‖ẘ‖T−1√

σ

√√√√1 +

T−1∑
t=1

‖gt‖2t−1,?

D Proof of Theorem 5

In this section, we provide the missing proof of Theorem 5, restated below:

Theorem 5. Each output wt of Algorithm 2 lies in W , and the regret for any ẘ ∈W is at most:

RT (ẘ) ≤ O

ε+
‖ẘ‖T−1

min(1,
√
σ)

max


√√√√1 +

T∑
t=1

‖gt‖2t−1,? log

(
1 +

∑T
t=1 ‖gt‖2t−1,?‖ẘ‖T−1

ε

)
,

log

(
1 +

∑T
t=1 ‖gt‖

2
t−1,?‖ẘ‖T−1

ε

))]

Proof. The proof is nearly identical to that Cutkosky and Orabona [2018] Theorem 3 - we simply observe that
none of the steps in their proof required a fixed norm, and reproduce the argument for completeness. From
Cutkosky and Orabona [2018] Proposition 1, we have that St is convex and Lipschitz with respect to ‖ · ‖t−1 for
all t. Therefore we have `t is also convex and ‖gt‖t−1,?-Lipschitz with respect to ‖ · ‖t−1. Therefore we have
‖ĝt‖t−1,? ≤ ‖gt‖t−1,?.

T∑
t=1

〈gt, wt − ẘ〉 =

T∑
t=1

〈gt, vt〉+ 〈gt, wt − vt〉 − 〈gt, ẘ〉

≤
T∑
t=1

〈gt, vt〉+ ‖gt‖t−1,?‖wt − vt‖t−1 − 〈gt, ẘ〉

= 2

T∑
t=1

`t(vt)− `t(ẘ)

≤ 2
T∑
t=1

〈ĝt, vt − ẘ〉
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Now since ‖ĝt‖t−1,? ≤ ‖gt‖t−1,? ≤ 1, we have that
∑T
t=1〈ĝt, vt−ẘ〉 is simply the regret of the unconstrained

Algorithm 1 and so the Theorem follows. Specifically, if we again substitute in the result of Theorem 11 to get
all constants, we obtain:

RT (ẘ) ≤ ε+ 2‖ẘ‖T−1 max


√√√√(3 + 3

T∑
t=1

‖gt‖2t−1,?

)
log

(
e+
‖ẘ‖T−1(6 + 11

∑T
t=1 ‖gt‖2t−1,?)

ε

)
,

2 log

(
e+
‖ẘ‖T−1(6 + 11

∑T
t=1 ‖gt‖

2
t,−1?)

ε

)]

+
2‖ẘ‖T−1√

σ

√√√√1 +

T−1∑
t=1

‖gt‖2t−1,?

E Detailed Full-Matrix Bounds with Constants

In this section, we show a more detailed proof of Theorems 6 and 7 that includes all constant factors and
logarithmic terms fetched from Theorem 11.

First, we prove the following result that was used in the proof of Theorem 6:
Lemma 8. Suppose ‖ · ‖1 and ‖ · ‖2 are such that 1

2
‖x‖2i is σi-strongly convex with respect to ‖ · ‖i for

i ∈ {1, 2}. Then the ‖x‖ =
√
‖x‖21 + ‖x‖22 is a seminorm and is min(σ1, σ2)-strongly convex with respect to

‖ · ‖.

Proof. First, we show that ‖ · ‖ is a seminorm. It is clear that ‖0‖ = 0 and c‖x‖ = ‖cx‖. To check triangle
inequality, we have

‖x+ y‖ =
√
‖x+ y‖21 + ‖x+ y‖22

≤
√

(‖x‖1 + ‖y‖1)2 + (‖x‖2 + ‖y‖2)2

= ‖(‖x‖1, ‖x‖2) + (‖y‖1, ‖y‖2)‖2
≤ ‖(‖x‖1, ‖x‖2)‖2 + ‖(‖y‖1, ‖y‖2)‖2
= ‖x‖+ ‖y‖

Now we show the strong-convexity. Recall that a function f is σ-strongly convex if and only if for all p ∈ [0, 1]
and all x, y,

f (px+ (1− p)y) ≤ pf(x) + (1− p)f(y)− σp(1− p)
2

‖x− y‖2

Let σ = min(σ1, σ2). Then we have
1

2
‖px+ (1− p)y‖21 ≤

p

2
‖x‖21 +

1− p
2
‖y‖21 +

σp(1− p)
2

‖x− y‖21
1

2
‖px+ (1− p)y‖22 ≤

p

2
‖x‖22 +

1− p
2
‖y‖22 +

σp(1− p)
2

‖x− y‖22
Adding these two inequalities proves the stated strong-convexity.

Theorem 9. Suppose gt satisfies ‖gt‖ ≤ 1 for all t where ‖ · ‖ is a norm such that 1
2
‖ · ‖2 is σ-strongly convex

with respect to ‖ · ‖. Let Gt =
∑t
i=1 gig

>
i and let r be the rank of GT . Suppose we run Algorithm 2 with

‖x‖2t = ‖x‖2 + x>(I +Gt)x, where I is the identity matrix. Then we obtain regret:

RT (ẘ) ≤ ε+ 2‖ẘ‖T max

[√
(3 + 3r log(T + 1)) log

(
e+
‖ẘ‖T (7 + 4r log(T + 1))

ε

)
,

2 log

(
e+
‖ẘ‖T (7 + 4r log(T + 1))

ε

)]
+

2√
min(σ, 1)

‖ẘ‖T
√

1 + r log(T + 1)

Proof. We saw in the proof of Theorem 6 that ‖ẘ‖T−1 ≤ ‖w‖T =
√

2‖w‖22 +
∑T
t=1〈gt, ẘ〉2. We also saw:

T∑
t=1

‖gt‖2t−1,? ≤ rank(GT ) log(T + 1)
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So then with all constants, the regret is

RT (ẘ) ≤ ε+ 2‖ẘ‖T−1 max


√√√√(3 + 3

T∑
t=1

‖gt‖2t−1,?

)
log

(
e+
‖ẘ‖T−1(7 + 4

∑T
t=1 ‖gt‖2t−1,?)

ε

)
,

2 log

(
e+
‖ẘ‖T (7 + 4

∑T
t=1 ‖gt‖

2
t−1,?)

ε

)]

+
2√

min(σ, 1)

√√√√1 +

T−1∑
t=1

‖gt‖2t−1,?

≤ ε+ 2‖ẘ‖T max

[√
(3 + 3r log(T + 1)) log

(
e+
‖ẘ‖T (7 + 4r log(T + 1))

ε

)
,

2 log

(
e+
‖ẘ‖T (7 + 4r log(T + 1))

ε

)]
+

2√
min(σ, 1)

‖ẘ‖T
√

1 + r log(T + 1)

Next, we carry out a similar computation for the AdaGrad-style full-matrix algorithm:
Theorem 10. Suppose W ⊂ Rd and gt satisfies ‖gt‖2 ≤ 1 for all t. Let Gt =

∑t
i=1 gig

>
i . Define ‖ · ‖t be

‖x‖2t = x>(I +Gt)
1/2x. Then the regret of Algorithm 2 using these norms is bounded by:

RT (ẘ) ≤ ε̃+ 2‖ẘ‖T max


√√√√(3 + 6tr(G1/2

T )
)

log

(
e+
‖ẘ‖T (7 + 8tr(G1/2

T ))

ε

)
,

2 log

(
e+
‖ẘ‖T (7 + 8tr(G1/2

T ))

ε

)]
+ 2‖ẘ‖T

√
1 + 2tr(G1/2

T )

where the Õ notation hides a logarithmic dependency on tr
(
G

1/2
T

)√
‖ẘ‖22 + ẘ>G

1/2
T ẘ.

This Theorem recovers the desired bound (3) up to log factors. Moreover, it is possible to interpret the operation
of the algorithm as in some rough sense “learning the optimal learning rate” required for the original AdaGrad
algorithm to achieve this bound.

Proof. In the proof of Theorem 7, we saw ‖ẘ‖T−1 ≤ ‖ẘ‖T =

√
‖ẘ‖22 + ẘ>G

1/2
T ẘ. Further,

T∑
t=1

‖gt‖2t−1,? ≤ 2tr(G1/2
T )

So then with all constants, the regret is

RT (ẘ) ≤ ε+ 2‖ẘ‖T−1 max


√√√√(3 + 3

T∑
t=1

‖gt‖2t−1,?

)
log

(
e+
‖ẘ‖T−1(7 + 4

∑T
t=1 ‖gt‖2t−1,?)

ε

)
,

2 log

(
e+
‖ẘ‖T (7 + 4

∑T
t=1 ‖gt‖

2
t−1,?)

ε

)]

+
2√
σ

√√√√1 +

T−1∑
t=1

‖gt‖2t−1,?

≤ ε+ 2‖ẘ‖T max


√√√√(3 + 6tr(G1/2

T )
)

log

(
e+
‖ẘ‖T (7 + 8tr(G1/2

T ))

ε

)
,

2 log

(
e+
‖ẘ‖T (7 + 8tr(G1/2

T ))

ε

)]
+ 2‖ẘ‖T

√
1 + 2tr(G1/2

T )
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F Full Version of Theorem 2 with Constants

In this section, we provide a more detailed version of Theorem 2 including all logarithmic and constant factors.
The proof is essentially a (slightly looser) version of analysis in Cutkosky and Sarlos [2019], but we provide it
below for completeness.
Theorem 11. There exists a one-dimensional online linear optimization algorithm such that if |gt| ≤ 1 for all t,
the regret is bounded by

T∑
t=1

gt(wt − ẘ) ≤ ε+ 2|ẘ|max


√√√√(3 + 3

T∑
t=1

g2
t

)
log

(
e+
|ẘ|(7 + 4

∑T
t=1 g

2
t )

ε

)
,

2 log

(
e+
|ẘ|(7 + 4

∑T
t=1 g

2
t )

ε

)]
And moreover each wt is computed in O(1) time.

Proof. Define the wealth of an algorithm as:

Wealtht = ε−
t∑

τ=1

gτwτ

We set

wt+1 = vt+1Wealtht
where vt ∈ [−1/2, 1/2]. This implies:

WealthT = ε

T∏
t=1

(1− gtvt)

Define

WealthT (̊v) = ε

T∏
t=1

(1− gtv̊)

Now, to choose vt, consider the functions:

`t(v) = − log(1− gtv)

Observe that `t(v) is convex. Let zt = gt
1−gtvt = `′t(vt). Notice that |zt| ≤ 2|gt| ≤ 2 since vt ∈ [−1/2, 1/2].

Then we have

log (WealthT (̊v))− log (WealthT ) =

T∑
t=1

`t(vt)− `t(̊v) ≤
T∑
t=1

zt(vt − v̊)

Now we choose vt ∈ [−1/2, 1/2] using FTRL on the losses zt with regularizers

ψt(v) =
Z

2
(5 +

t∑
τ=1

z2
τ )v2

Notice that ψt is Z(4 +
∑t
τ=1 z

2
τ )-strongly convex with respect to | · |. Therefore by Theorem 1:

T∑
t=1

zt(vt − v̊) ≤ ψT (̊v) +
1

2

T∑
t=1

z2
t

Z(5 +
∑t−1
τ=1 z

2
τ )

≤ Z

2

(
5 +

T∑
t=1

z2
t

)
v̊2 +

1

2Z

T∑
t=1

z2
t

1 +
∑t
τ=1 z

2
τ

≤ Z

2

(
5 +

T∑
t=1

z2
t

)
v̊2 +

1

2Z
log

(
1 +

T∑
t=1

z2
t

)

Therefore, for all v̊ ∈ [−1, 2/, 1/2],

log (WealthT ) ≥ log (WealthT (̊v))− Z

2

(
5 +

T∑
t=1

z2
t

)
v̊2 +

1

2Z
log

(
1 +

T∑
t=1

z2
t

)

≥ log (WealthT (̊v))− Z

2

(
5 + 4

T∑
t=1

g2
t

)
v̊2 +

1

2Z
log

(
1 + 4

T∑
t=1

g2
t

)
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Next, use the tangent bound log(1− x) ≥ −x− x2 to obtain:

log (WealthT (̊v)) ≥ log(ε)−
T∑
t=1

gtv̊ −
T∑
t=1

g2
t v̊

2

So overall we have:

log (WealthT ) ≥ log(ε)−
T∑
t=1

gtv̊ −
Z

2

(
5 +

T∑
t=1

(
2

Z
+ 4

)
g2
t

)
v̊2 − 1

2Z
log

(
1 + 4

T∑
t=1

g2
t

)

WealthT ≥ ε exp

(
−

T∑
t=1

gtv̊ −
Z

2

(
5 +

T∑
t=1

(
2

Z
+ 4)g2

t

)
v̊2 − 1

2Z
log

(
1 + 4

T∑
t=1

g2
t

))
Now we relate this to regret:

T∑
t=1

gt(wt − ẘ) = ε− ẘ
T∑
t=1

gt −WealthT

≤ ε− ẘ
T∑
t=1

gt − ε exp

(
−

T∑
t=1

gtv̊ −
Z

2

(
5 +

T∑
t=1

(
2

Z
+ 4

)
g2
t

)
v̊2 − 1

2Z
log

(
1 + 4

T∑
t=1

g2
t

))

≤ ε+ sup
G

[
Gẘ − ε exp

(
Gv̊ − Z

2

(
5 +

T∑
t=1

(
2

Z
+ 4

)
g2
t

)
v̊2 − 1

2Z
log

(
1 + 4

T∑
t=1

g2
t

))]

≤ ε+
|ẘ|
v̊

(
log

(
|ẘ|
ε̊v

)
+
Z

2

(
5 +

T∑
t=1

(
2

Z
+ 4

)
g2
t

)
v̊2 +

1

2Z
log

(
1 + 4

T∑
t=1

g2
t

)
− 1

)

≤ ε+
|ẘ|
v̊

log

(
|ẘ|(1 + 4

∑T
t=1 g

2
t )1/2Z

ε̊v

)
+
Z

2

(
5 +

T∑
t=1

(
2

Z
+ 4

)
g2
t

)
v̊

where we have used Cutkosky and Sarlos [2019] Lemma 3 in to calculate the supremum over G. Now set Z = 1,
apply Cutkosky and Sarlos [2019] Lemma 4, and over-approximate several constants to obtain:

T∑
t=1

gt(wt − ẘ) ≤ ε+ 2|ẘ|max


√√√√(3 + 3

T∑
t=1

g2
t

)
log

(
e+
|ẘ|(7 + 4

∑T
t=1 g

2
t )

ε

)
,

2 log

(
e+
|ẘ|(7 + 4

∑T
t=1 g

2
t )

ε

)]
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